Пульсоксиметр - что это такое? Принцип действия и применение. Какой пульсоксиметр лучше выбрать

Снабжение органов и тканей кислородом играет очень важную роль для организма человека. Без дыхания наши ткани погибли бы за считанные минуты. Однако данный процесс не ограничивается вентиляцией легких, существует очень важный второй этап – транспорт газов по крови. Существует целый ряд показателей, отражающих его протекание, среди которых очень важным является сатурация кислорода (то есть насыщение им гемоглобина) в крови. Каковы нормы сатурации? Какие факторы ее определяют? О каких заболеваниях может говорить ее снижение?

Сатурация – это показатель, отражающий процент насыщения гемоглобина кислородом. Для ее определения чаще всего используют такой прибор, как пульсоксиметр, позволяющий проводить мониторинг пульса и сатурации в режиме реального времени. Кроме того, существуют лабораторные методы, позволяющие оценить данный показатель при непосредственном исследовании крови, однако их используют реже, поскольку они требуют вмешательства с целью забора крови у человека, в то время как пульсоксиметрия абсолютно безболезненна и может проводиться круглосуточно, а отклонения полученных при ней данных не превышают 1% по сравнению с анализом.

Конечно, гемоглобин не может быть насыщен кислородом на все 100%, поэтому норма сатурации лежит в пределах 96-98%. Этого вполне достаточно для того, чтобы поступление кислорода к клеткам нашего тела было на оптимальном уровне. В том случае, если насыщение гемоглобина кислородом пониженное, транспорт газов к тканям нарушен, и их дыхание недостаточное.

Снижение сатурации может быть и в норме — у курящего человека. Для людей, страдающих от этой вредной привычки, норматив установлен на уровне 92-95%. Такие цифры у курильщиков не говорят о наличии патологии, однако понятно, что они все же ниже величин, установленных для обычного человека. Это говорит о том, что курение нарушает транспорт газов гемоглобином и приводит к постоянной небольшой гипоксии клеток. Курящий человек добровольно отравляет себя некой вредной смесью газов, которая снижает уровень кислорода в эритроцитах. Со временем это обязательно приведет к тем или иным патологиям во внутренних органах.

Причины снижения показателя

Первый фактор, приводящий к тому, что содержание кислорода в артериальной крови снижается, — это нарушения дыхания. Например, у людей с хроническими заболеваниями легких сатурация может лежать в пределах 92-95%. При этом транспорт кислорода и углекислого газа не нарушен, уменьшение показателя связано не с факторами крови, а со снижением легочной вентиляции. Оценка сатурации имеет огромное значение при обследовании больных с дыхательной недостаточностью. Исследование позволяет подобрать необходимый метод дыхательной терапии, а также задать нужные параметры искусственной вентиляции легких (если в ней есть надобность).


Также сатурация падает в результате большой кровопотери, особенно при таком состоянии, как геморрагический шок. На основании исследуемого показателя можно определить уровень кровопотери, а значит, оценить степень тяжести состояния человека. Мониторинг сатурации очень важен при проведении оперативных вмешательств. Он позволяет вовремя выявить пониженное поступление кислорода к клеткам тела человека и предпринять необходимые мероприятия, чтобы улучшить его.

Особенно важное значение данный показатель имеет при операциях на сердце: его снижение происходит раньше, чем уменьшение пульса или падение артериального давления. Кроме того, за ним обязательно следят в постреанимационный период, а также при выхаживании недоношенных детей (его динамика при подобных состояниях очень показательна).

Еще одна возможная причина снижения уровня насыщения гемоглобина кислородом — патология сердца. Это могут быть такие заболевания, как:

Пониженное значение сатурации в данном случае обусловлено уменьшением количества крови, выталкиваемой сердцем. За счет этого ее циркуляция в теле человека замедляется, в том числе уменьшается приток крови к легким, а вместе с тем — и оксигенация. Происходит снижение многих функций крови, в том числе и транспорта газов. И все это связано именно с работой сердца, а не с тем, как гемоглобин переносит кислород и отдает его клеткам.


Очень важно, что сатурация помогает выявить неявную патологию, например, скрытую сердечную недостаточность и скрытый кардиогенный шок. При данных нозологических единицах у пациентов может не быть никаких жалоб, поэтому количество случаев, когда скрытые заболевания не диагностированы, достаточно высоко. Вот почему так важно применение дополнительных методов исследования, в том числе — определение транспорта гемоглобином газов по крови.

Кроме того, сатурация снижается при инфекционных заболеваниях. Ее значения устанавливаются примерно на уровне 88%. Все дело в том, что инфекция значительно влияет на обмен веществ, синтез белка, состояние всего тела в целом. Особенно сильные изменения происходят при сепсисе. При таком тяжелом состоянии нарушается работа всех органов, ухудшается их кровоснабжение, а вот нагрузка на них, напротив, повышается. Поэтому они достаточно сильно страдают от гипоксии.

Таким образом, сатурация отражает, насколько хорошо кровь переносит кислород к органам и тканям нашего тела.

Безусловно, существуют и другие показатели, отражающие данный процесс, в частности, многие исследования определяют не только кислород, но и углекислый газ, а также учитывают не только то, как гемоглобин переносит газы, но и как он их отдает. Однако определение сатурации при помощи пульсоксиметра является наиболее простым и доступным методом . Он не требует нарушения целостности кожных покровов и забора даже малого количества крови на анализ. Достаточно просто надеть прибор на палец и через несколько секунд получить результат.

Как правило, сатурация бывает снижена при достаточно серьезных состояниях, вызывающих тяжелые изменения во всем организме. В таких случаях показатель может быть снижен значительно. Чем он ниже, тем хуже прогноз: тело человека плохо переносит гипоксию, особенно сильно страдают клетки головного мозга. Незначительное снижение сатурации, как правило, бывает связано с хроническими болезнями легких и чаще всего возникает на фоне курения.

Универсального способа повысить сатурацию не существует. В каждом конкретном случае врач решает, какое именно лечение следует выбрать. Чаще всего во главу угла ставится борьба с основным заболеванием, вызвавшим данный симптом. Также применяют кислородную терапию, используют препараты, повышающие насыщение крови кислородом. Но это, скорее, вспомогательные мероприятия. Возврат сатурации к норме — это результат того, что человек постепенно идет на поправку, и его состояние улучшилось.

Цикл статей, посвященных мониторингу жизненно-важных функций в условиях СМП. Первая статья будет посвящена пульсоксиметрии.

Состоявшееся в последнее время некоторое переоснащение СМП привело к появлению и в нашей стране на оснащении бригад скорой помощи пульсоксиметров, что не может не радовать, так как работники догоспитального этапа получили в руки прибор, который (при умелом его использовании) позволяет существенно улучшить качество оказываемой ими помощи. О том, что такое пульсоксиметрия и как можно использовать данные, полученные на экране пульсоксиметра, в лечении пациентов, мы и поговорим.

Итак, в основу метода пульсоксиметрии положено измерение поглощения света определенной длины волны гемоглобином крови. Гемоглобин служит своего рода фильтром, причем "цвет" фильтра зависит от количества кислорода, связанного с гемоглобином, или, иными словами, от процентного содержания оксигемоглобина, а "толщину" фильтра определяет пульсация артериол: каждая пульсовая волна увеличивает количество крови в артериях и артериолах. Таким образом, применение пульсоксиметрии позволяет определить сразу три диагностических параметра: степень насыщения гемоглобина крови кислородом, частоту пульса и его "объемную" амплитуду.

История метода

История пульсоксиметрии берет свое начало с 1874 года, когда некий Вирордт обнаружил, что поток красного света, проходя через кисть, ослабевает после наложения жгута. В 30-60-х годах нашего века предпринимается множество попыток создать устройство для быстрого выявления гипоксемии, но приборы были громоздкими и неудобными, а компактных электронных схем не существовало (микропроцессоры появились гораздо позже), свет нужных длин волн получали с помощью светофильтров, установленных в датчике, да и процедуры калибровки были слишком сложны для повседневной работы.

В 1972 году Такуо Аояги (на фото), инженер японской корпорации NIHON KOHDEN, изучавший неинвазивный метод измерения сердечного выброса, обнаружил, что по колебаниям абсорбции света, вызванной пульсацией артериол, можно рассчитать оксигенацию именно артериальной крови. Вскорости был выпущен и первый пульсоксиметр (модель OLV-5100). Этот прибор не нуждался в калибровках, но в качестве источника света в нем по-прежнему использовалась система светофильтров. Скотт Вилбер впервые употребил для калибровки монитора и обработки данных микропроцессор, а также запатентовал собственный алгоритм расчета сатурации. Объединение принципа Т. Аояги и полупроводниковых технологий позволило С. Вилберу создать первый пульсоксиметр современного образца.

Договоримся о терминах

Уважаемые коллеги, всем хорошо известно выражение: «ясная мысль ясно излагается». В свете этого мне бы хотелось, чтобы вы раз и навсегда усвоили для себя значение и обозначение определенных терминов, имеющих самое непосредственное отношение к обсуждаемой тематике. Дело в том, что периодически встречающееся среди коллег употребление терминов вроде «сатурация кислорода», как привило, констатирует непонимание не только основ метода, но и принципов внешнего и внутреннего дыхания.

Итак, рассмотрим термины и их обозначения.

SAT - сатурация (насыщение);
НЬО2 - процентное содержание НЬО2 от общего количества гемоглобина;
SаO2 - насыщение артериальной крови кислородом;
SpO2 - насыщение артериальной крови кислородом, измеренное методом пульсоксиметрии.

Последнее обозначение - наиболее употребляемое и самое корректное, поскольку предполагает, что результат измерения зависит от особенностей метода. Например, SpO2 при наличии в крови карбоксигемоглобина будет выше истинной величины SaO2, измеренной лабораторным методом, но об этом мы поговорим ниже.

Принцип метода

В основе метода, как, наверное, уже всем стало понятно, лежит спектрофотометрия, т. е. дифференциация молекул по спектру поглощения света. С точки зрения физики пульсоксиметрия представляет собой оксиметрию, основанную на изменении спектра поглощения электромагнитной (световой) энергии при изменении процентного содержания оксигемоглобина.

Датчик пульсоксиметра представляет собой комбинацию двух светодиодов, один из которых излучает красный цвет, а второй дает невидимое глазу инфракрасное излучение. На противоположной части датчика находится фотодетектор, определяющий интенсивность падающего на него светового потока. Когда между светодиодами и фотодетектором находится палец или мочка уха пациента, часть излучаемого света поглощается, рассеивается, отражается тканями и кровью, и световой поток, достигающий детектора, ослабляется.

Напомню, что гемоглобин — это общее название белков крови, содержащихся в эритроцитах и состоящих из четырех цепочек бесцветного белка глобина, каждая из которых включает одну группу гема. Разновидности гемоглобина имеют собственные названия и обозначения (фетальный Нb, MetHb и пр.).

Оксигемоглобин — полностью оксигенированный гемоглобин, каждая молекула которого содержит четыре молекулы кислорода (О2). Он обозначается как НbО2 и имеет совершенно другой спектр поглощения светового излучения.

Дезоксигемоглобин — гемоглобин, не содержащий кислорода. Называется также восстановленным, или редуцированным, гемоглобином и обозначается Нb.

Ткани, через которые проходят оба световых потока, являются неизбирательным фильтром и равномерно ослабляют излучение обоих светодиодов. Степень ослабления зависит от толщины тканей, наличия кожного пигмента, лака для ногтей и прочих препятствий на пути света. Гемоглобин же, в отличие от тканей, — это цветной фильтр, причем на цвет фильтра влияет, как уже подчеркивалось, степень насыщения гемоглобина кислородом. Дезоксигемоглобин, имеющий темно-вишневый цвет, интенсивно поглощает красный свет и слабо задерживает инфракрасный. А вот оксигемоглобин хорошо рассеивает красный свет (и потому сам имеет красный цвет), но интенсивно поглощает инфракрасное излучение. Спектры абсорбции света Hb и HbO2 хорошо показаны на рисунке:

Становится понятным, какой же поток пройдет через оксигенированную кровь. Таким образом, соотношение двух световых потоков, дошедших до фотодетектора через мочку уха или палец, зависит от степени насыщения (сатурации) гемоглобина крови кислородом. По этим данным, используя специальный алгоритм, прибором рассчитываются процентное содержание в крови оксигемоглобина. При этом учитываются показатели только пульсирующего кровотока, так как нас интересует насыщение кислородом именно артериальной крови. В современных моделях пульсоксиметров пульсация артериол выводится на дисплей в виде кривой. Поскольку эта кривая отражает колебания объема артериального русла, измеренные фотометрическим методом, она называется фотоплетизмограммой (ФПГ).

При использовании пульсоксиметрии следует всегда иметь в виду, что информация о снижении или повышении SаО2 отражается на дисплее с некоторой задержкой; в отдельных случаях она составляет несколько десятков секунд. Главная причина задержки заключается в том, что датчик монитора измеряет сатурацию на самой периферии кровеносного русла, да в к тому же нередко устанавливается на самых удаленных от центра частях тела — пальцах. В норме кровь очередного ударного объема достигает пальцевого датчика через 3-5 сек, а ушного - через 2-3 сек после сердечного сокращения, но в отдельных случаях (централизация) этот интервал может увеличиваться до 20-30 сек, а иногда и до 1-1,5 мин. Становится понятным, почему при критических состояниях ушной датчик более предпочтителен, нежели пальцевой.

Следует также помнить, что пульсоксиметр показывает усредненные параметры за некоторый период наблюдения. В разных моделях этот период составляет от 3 до 20 сек или от 2 до 20 циклов. В простейших моделях интервал обновления данных задается жестко и обычно равняется 5 с. Таким образом, время реакции числового дисплея монитора на внезапное изменение сатурации складывается из времени кровотока на участке "сердце-палец" и интервала обновления данных на дисплее, а практически означает, что уровень сатурации отражается на дисплее с задержкой в пределах от 10 сек до 1,5 мин.

Погрешности

Понятно, что уже сам принцип и его техническая реализация в пульсоксиметрии закладывают основу для появления всяческих погрешностей, которые могут служить причиной ошибочных выводов специалиста, использующего данный вид мониторинга. Самая частая склонность к артефактам отмечается (и это понятно) у недорогих моделей, не имеющих специальных систем защиты от помех. Поэтому критически относитесь к показаниям вашего прибора, купленного по нацпроекту, если его производитель не внушает серьезного доверия.

Итак, рассмотрим основные виды погрешностей.

1. Погрешности, связанные с освещением.

    Внешнее освещение

    Ксеноновые лампы

2. Погрешности вследствие электронаводки

    Источники электромагнитного излучения (мониторы, ЭКС, аппараты ИВЛ, дефибрилляторы и т. д.)

    Электрохирургические инструменты (малоактуально для СМП)

3. Погрешности, порожденные низкой амплитудой ФПГ. Способность пульсоксиметра выделять полезный сигнал для расчета SpO2 зависит от объема пульсаций, то есть от амплитуды ФПГ. При ослаблении периферического кровотока монитор вынужден прибегать к значительному усилению электрического сигнала, но при этом неизбежно нарастает и фоновый шум фотодетектора. При критическом снижении амплитуды ФПГ соотношение сигнал/шум становится настолько низким, что сказывается на точности расчета SpO2. Пульсоксиметры разных фирм ведут себя в этой ситуации неодинаково. "Честные" модели либо прекращают индикацию SpO2, либо предупреждают на дисплее, что не ручаются за точность данных. Остальные же не моргнув глазом показывают величину, рассчитанную зачастую не из сигнала, а из шума. Я думаю, что практически каждый реаниматолог или врач СМП видел, как отечественные модели показывают 100%-ю SpO2 при проведении закрытого массажа сердца, что не может не вызывать улыбку. Грусть вызывают лишь попытки некоторых коллег интерпретировать это как свидетельство качества проводимого массажа.

4. Концентрация гемоглобина в крови может также являться источником погрешностей. При глубокой анемии, сочетающейся с расстройствами периферического кровотока, точность измерения Sp02 уменьшается на несколько процентов. Причина снижения точности здесь понятна: именно гемоглобин является носителем исходной информации для пульсоксиметра. Естественно, в свете этого заявления некоторых коллег о том, что «при анемии снижается сатурация», не выдерживают никакой критики, так как никакой линейной зависимости между сатурацией и снижением концентрации гемоглобина не существует.

В книге очень уважаемого мной И. Шурыгина «Мониторинг дыхания» описан простой способ проверки прибора. Суть его в следующем. Зафиксируйте датчик на своем пальце, положите руку на стол и включите пульсоксиметр. На дисплее высветятся значения SрО2 и частоты пульса, измеренные в идеальных условиях. Запомните их, встаньте и поднимите руку с датчиком вверх. В результате кровенаполнение тканей пальца и амплитуда пульсаций резко уменьшатся. Пульсоксиметру потребуется несколько секунд для того, чтобы подобрать интенсивность свечения фотодиодов и новый коэффициент усиления сигнала и заново рассчитать сатурацию и частоту пульса. Данные параметры не должны отличаться от исходных: поднятие руки никак не влияет на оксигенацию крови в легких. Если пульсоксиметр показывает другие значения или вообще прекращает работать, значит, он непригоден для мониторинга больных с тяжелыми расстройствами кровообращения.

5. Погрешности вследствие движений пациента. Самая частая причина ошибок пульсоксиметра. Она очень актуальна именно для СМП, так как в полной мере проявляется при транспортировке. Умение модели пульсоксиметра определять эти артефакты и бороться с ними во многом определяется качеством прибора. Для исключения данных помех и правильной интерпретации показателей монитора крайне важно, чтобы пульсоксиметр отображал ФПГ, по которой можно судить о наличии обсуждаемых артефактов:

Разумеется, частота пульса, сатурация и амплитуда ФПГ, рассчитанные в таких условиях, совершенно неинформативны.

Таким образом, напрашивается неутешительный вывод, что дешевый прибор, да еще и без монитора, способен работать только в идеальных условиях и непригоден для СМП. Во всяком случае, к его показателям следует относиться очень и очень осмотрительно.

6. Погрешности вследствие наличия дополнительных фракций гемоглобина в крови. К этим фракциям принадлежат дисгемоглобины (карбокси- и метгемоглобин), а также фетальный гемоглобин.

    При отравлении угарным газом или у больных с недавно полученными ожогами пламенем карбоксигемоглобин может составлять десятки процентов от общего количества гемоглобина. СОНЬ поглощает свет почти так же, как и НЬО2, поэтому вместо насыщения гемоглобина кислородом пульсоксиметр у таких пациентов показывает сумму процентных концентраций СОНЬ и НЬОа. Например, если SаО2 = 65 %, а СОНЬ = 25 %, пульсоксиметр высветит на дисплее величину SpO2, близкую к 90 %. Таким образом, при карбоксигемоглобинемии пульсоксиметр завышает степень насыщения гемоглобина кислородом.

    MetHb поглощает красный и инфракрасный свет так же, как и гемоглобин, насыщенный кислородом на 85 %. При умеренной метгемоглобинемии пульсоксиметр занижает SpO2, а при выраженной метгемоглобинемии показывает величину, близкую к 85 %, которая почти не зависит от колебаний SaO2. Об этом следует помнить при активном применении нитратов у пациента.

    Наличие в крови фетального гемоглобина не отражается на показателях пульсоксиметра.

Лак для ногтей практически не искажает показания пульсоксиметра. В литературе имеются данные о том, что синий лак может избирательно ослаблять излучение одного из светодиодов (660 нм), что приводит к артефактному занижению SpO2, но практического подтверждения они пока не получили.

Пульсоксиметрия в диагностике

Вначале следует уяснить для себя одну очень важную вещь: пульсоксиметрия не является показателем вентиляции, а характеризует только оксигенацию. Больной (особенно после преоксигенации) может не дышать несколько минут до того, как SpO2 начнет падать. Из этого следует, что пульсоксиметр надежнее всего диагностирует истинную (т. н. «гипоксическую») гипоксию, т. е. гипоксию, связанную со снижением концентрации кислорода в оттекающей от легких крови.

Нормальная величина SpO2 находится в диапазоне 94-98 %, причем у пациентов молодого и среднего возраста, не имеющих легочной патологии, преобладают значения сатурации 96-98 %, а у пожилых больных чаще встречается Sp02 94-96 %, что обусловлено возрастными изменениями в легких. Остерегайтесь пульсоксиметров, которые оптимистично пишут вам сатурацию 100% при дыхании пациента атмосферным воздухом — как правило, это недорогие приборы невысокого качества.

Гипоксемия. До появления пульсоксиметрии главным признаком гипоксемии считался цианоз. Интенсивность цианоза зависит от количества восстановленного гемоглобина в крови и от объема сосудистого ложа (в самой емкой, венозной его части). Поэтому при выраженной анемии или вазоконстрикции оценка цианоза затруднена. Существуют две главные причины цианоза: артериальная гипоксемия и ухудшение периферического кровотока. Они могут сочетаться. Считается, что когда SpO2 опускается до 90 %, увидеть цианоз удается лишь в половине случаев. Даже десатурация артериальной крови до 85 % (РаО2 = 50 мм рт. ст.), что расценивается как серьезная гипоксемия, требующая коррекции, далеко не всегда сопровождается развитием цианоза. В этом можно убедиться, сопоставляя Sp02 и внешний вид больных. В этой ситуации значение пульсоксиметра велико. Именно его широкое применение рассеяло иллюзии специалистов экстремальной медицины относительно нормальной оксигенации пациентов. Мониторинг показал, что эпизоды гипоксемии в возникают в 20 (!) раз чаще, чем обнаруживаются при обычном (без применения пульсоксиметрии) наблюдении за больным. Описано немало случаев, когда опытные врачи не могли распознать цианоз у пациентов с глубочайшей артериальной десатурацией, замаскированной анемией или вазоконстрикцией. Не случайно с внедрением пульсоксиметров в операционных и палатах интенсивной терапии резко сократилась частота эпизодов недиагностированной или несвоевременно обнаруженной гипоксемии.

Ухудшение перфузии периферии сопровождается возникновением акроцианоза. При отсутствии легочной патологии пульсоксиметр в такой ситуации показывает нормальный уровень SpO2, но из уменьшенного объема хорошо оксигенированной артериальной крови, притекающей к тканям кожи, последние извлекают прежнее количество кислорода. К пульсоксиметрическим признакам нарушения перфузии тканей относится уменьшение амплитуды фотоплетизмограммы, что позволяет распознать это состояние.

Итак, становится понятным, что в случае гипоксемии пульсоксиметр покажет снижение SpO2, при этом, в зависимости от состояния периферического кровообращения, амплитуда ФПГ может быть нормальной, повышенной или сниженной. При этом оценка обсуждаемых показателей в динамике может быть гораздо информативнее их однократного измерения.

Я намеренно сейчас немного уйду в сторону от обсуждаемого вопроса, поскольку рядом с нашей темой стоит одна проблема, которую мне бы очень хотелось обсудить.

Увеличение концентрации кислорода во вдыхаемой (или вдуваемой — при ИВЛ) газовой смеси - универсальный способ коррекции артериальной гипоксемии. У большинства пациентов одной только оксигенотерапии достаточно для того, чтобы нормализовать или хотя бы повысить Sр02. Однако, руководствуясь принципом: «Если больной дышит плохо, пусть он плохо дышит кислородом», полезно помнить следующие вещи:

    беспричинной гипоксемии не бывает;

    кислород ликвидирует гипоксемию, но не причину, ее породившую, создавая иллюзию относительного благополучия;

    к кислороду необходимо относиться так же, как к любому другому медицинскому препарату - его нужно применять по определенным показаниям, в определенных дозах и помнить, что он обладает весьма опасными побочными эффектами;

    концентрация кислорода в дыхательной смеси должна быть той минимальной, которая достаточна для коррекции гипоксемии, т. е. не стоит ставить всем налево и направо 8-10 л/мин;

    предельная безопасная для длительного использования концентрация кислорода в дыхательной смеси, по последним данным, равна 40 %;

    токсическое влияние высоких концентраций кислорода на легкие не имеет специфических проявлений и всплывает в виде ателектазов, гнойного трахеобронхита или респираторного дистресс-синдрома, которые в дальнейшем соотносят с чем угодно, но не с оксигенотерапией;

    перед началом оксигенотерапии задайте себе вопрос — «не нуждается ли пациент в ИВЛ?»;

    у пациентов с хронической легочной патологией имеется адаптация к более низкому уровню сатурации, поэтому попытка «нормализовать» SpO2 с помощью оксигенотерапии у таких пациентов может привести к угнетению спонтанного дыхания и развитию апноэ;

    и наконец, к кислороду в полной мере относится золотое правило интенсивной терапии: лучший лист назначений - не тот, к которому нечего добавить, а тот, из которого нечего вычеркнуть. Это же правило в полной мере относится и к помощи, оказываемой на догоспитальном этапе. Например, вводить пациенту с ЖКК этамзилат лишь на основании представлений врача о том, что он «не навредит» - непрофессионально.

Гиповолемия. Как известно, гиповолемия — это несоответствие объема циркулирующей крови емкости сосудистого русла. Ее классическим примером является травматический шок. Пульсоксиметрия не принадлежит к точным методам мониторинга гемодинамики, однако нарушения системного и легочного кровообращения, вызванные гиповолемией, приводят к типичным изменениям пульсоксиметрических показателей, которые дополняют общую клиническую картину.

Итак, чем же проявляется гиповолемия?

    Снижение SpO2, обусловленное выраженной неравномерностью легочного кровотока. Этот признак очень типичен для гиповолемии, но может быть выявлен только у больных, дышащих воздухом или смесью N2O: О2 с высоким содержанием закиси азота. При дыхании кислородом в концентрации 30% и выше, этот признак выявлен не будет!

    Тахикардия - компенсаторная реакция, направленная на поддержание сердечного выброса. Здесь все понятно.

    Снижение амплитуды фотоплетизмограммы, вплоть до прекращения ее показа вообще, в результате периферического артериолоспазма и уменьшения ударного объема (на ранних стадиях шока, до пареза прекапилляров вследствие лактат-ацидоза). В свою очередь увеличение амплитуды ФПГ на фоне интенсивной терапии свидетельствует о восстановлении периферического кровотока.

    Дыхательные волны на фотоплетизмограмме (см. рисунок) - колебания высоты волн ФПГ, синхронные с дыханием. Данный признак очень чувствителен и зачастую появляется раньше остальных. Дыхательные волны отражают возросшую чувствительность венозного возврата к колебаниям внутригрудного давления.

Пульсоксиметрия при интубации трахеи. Использование пульсоксиметрии поистине бесценно в процессе проведения интубации трахеи, причем пульсоксиметр реагирует на гипоксемию значительно раньше, чем выявляются ее клинические признаки.

    В процессе преоксигенации SpO2 быстро поднимается до 100% (при отсутствии РДСВ и другой тяжелой легочной патологии) за счет замещения азота кислородом в легких. Однако само по себе поднятие сатурации до максимальных значений не может служить критерием качества преоксигенации по причинам, указанным выше.

    Вводный наркоз способствует исчезновению негативного эмоционального фона пациента. Некоторые препараты, используемые для индукции, оказывают вазодилатирующее действие (тиопентал, пропофол и отчасти кетамин). Поэтому во время вводного наркоза происходит увеличение амплитуды ФПГ.

    Ларингоскопия и интубация трахеи сопровождаются механическим раздражением мощных рефлексогенных зон и возбуждением симпатической системы, которое проявляется вазоспазмом, артериальной гипертензией, тахикардией и, довольно часто, транзиторными нарушениями ритма сердца. В такие минуты внимание медика полностью сосредоточено на выполняемых действиях, но при просмотре трендов, хранящихся в памяти пульсоксиметра, нередко обнаруживается снижение амплитуды ФПГ и постепенное ее восстановление после завершения манипуляции.

    При затянувшейся интубации трахеи пульсоксиметр дает возможность контролировать допустимую продолжительность этой манипуляции по уровню SpO2, для чего нужно установить минимальное время обновления данных на дисплее монитора (режим "fast response"), чтобы сократить промежуток от момента возникновения гипоксемии до ее регистрации монитором. Но даже несмотря на это необходимо помнить, что показания пульсоксиметра запаздывают. Снижение SpO2 ниже 90% однозначно требует прекращения попыток интубации и возобновления оксигенации пациента.

    В отсутствие капнографа данные пульсоксиметрии могут служить относительным подтверждением правильного нахождения эндотрахеальной трубки. Здесь также необходимо помнить, что показатели SpO2 будут запаздывать. При появлении четкой тенденции к снижению SpO2 следует исключить нахождение трубки в пищеводе и, при необходимости, переинтубировать пациента.

Заключение

Каждый эпизод снижения Sp02 имеет свою причину и должен побуждать работника экстренной медицинской помощи не только к коррекции самой гипоксемии (этого зачастую нетрудно достичь обычной ингаляцией кислорода), но также к выявлению и устранению вызвавших ее расстройств. Каждый клинический случай имеет свой набор наиболее вероятных причин артериальной гипоксемии; внимательная оценка состояния больного помогает обнаружить именно ту, которая привела к десатурации. Старайтесь объяснить хотя бы для себя причину и динамику снижения или повышения сатурации в каждом клиническом случае — это быстро научит вас использовать диагностические возможности метода в полной мере.

Умение распознавать причину артериальной гипоксемии или изменения амплитуды пульсовой волны во многих случаях приносит большую пользу. Пульсоксиметрия - самый распространенный метод мониторинга на СМП и в отделениях интенсивной терапии, и уменьшение SpO2 нередко оказывается единственным ранним сигналом неблагополучия. Ориентируясь на показания пульсоксиметра, можно, к примеру, своевременно увеличить темп инфузионной терапии, исправить положение интубационной трубки, удалить катетером накопившуюся мокроту, заподозрить развитие пневмо- или гемоторакса. Положительная динамика сатурации после ликвидации нарушения подтверждает истинность вашего предположения.

Умение находить связь между колебаниями показателей на дисплее пульсоксиметра и динамикой в состоянии пациента должно стать привычкой, которую, однако, нужно развивать. Незначительные интеллектуальные затраты на приобретение этого навыка окупаются очень быстро. Кроме того, данный метод мониторинга при четком понимании его основ достаточно быстро осваивается.

Следует учесть, что пульсоксиметрия начинается не с подключения датчика к пациенту, а с грамотного выбора модели монитора. Надежность, способность улавливать сигнал даже при выраженных нарушениях периферического кровотока, удобное и четкое представление данных на дисплее, наличие алгоритмов коррекции артефактов (крайне важно для СМП), большой объем и хорошая организация памяти, несложная и интуитивно понятная система управления монитором - вот далеко не полный список требований к модели, которая в руках понимающего специалиста позволяет реализовать разнообразные возможности метода, которые были рассмотрены в статье.

Литература

    Зислин Б. Д., Чистяков А. В. Мониторинг дыхания и гемодинамики при критических состояниях.

    Кривский Л.Л. Капнография и пульсоксиметрия.

    Шурыгин И. А. Мониторинг дыхания.

    Andrew Griffiths , Tim Lowes, Jeremy Henning . Pre-Hospital Anesthesia Handbook.

    M.R. Pinsky D. Payen (Eds.) . Functional Hemodynamic Monitoring

Сколько человек живет, столько он и дышит. Все мы знаем, что воздух с кислородом поступает в легкие, а после переработки выдыхается углекислый газ. Но не каждый догадывается о более сложном процессе, который происходит немного глубже.

Все это нужно для того, чтобы насытить каждую клеточку, каждую ткань и каждый орган необходимым для их нормального функционирования кислородом. Кровь является тем самым «транспортным средством», ведь она циркулирует по всему телу и даже в его самых отдаленных уголках. Но она представляет собой поток различных элементов и кровяных структур, выполняющих различные функции. За перенос кислорода отвечает гемоглобин, содержащийся в эритроцитах.

Сатурацией называется процесс, в ходе которого любая жидкость насыщается газами. Такое определение применяется в различных отраслях. Что касается медицины, то здесь она означает конкретно насыщенность крови кислородом.

Что это такое сатурация мы выяснили, давайте поговорим теперь об ее нормах и причинах отклонений.

Норма сатурации

В организме здорового человека практически весь гемоглобин должен быть связан с кислородом. Норма сатурации в крови составляет от 96% до 99%. Если индекс сатурации опускается за пределы 95%, то уместно полагать, что:

  • У пациента развиваются сбои в дыхательной и сердечно-сосудистой системе;
  • Либо же у него имеется анемия, вызванная дефицитом железа.

У людей с хроническими болезнями дыхательных органов и сердца, изменение сатурации в сторону уменьшения - это признак осложнения патологического процесса. Обязательно знать уровень сатурации в крови должны лица, страдающие от заболеваний легких и бронхита. Для них очень важно регулярно за ним следить.

На этот важный показатель весьма сильно оказывает неблагоприятное воздействие именно окружающая среда, которая в больших городах и вблизи промышленных зон крайне критическая. Практически все люди, живущие там, испытывают на себе недостаточное обогащение атмосферы кислородом. Из-за этого дыхание становится поверхностным, что влечет за собой еще больший недостаток кислорода. Удовлетворение даже минимальной потребности в нем не может быть осуществлено, отсюда такая ужасающая статистика с увеличением количества случаев заболеваний дыхательных органов и сердца среди населения. Болезни легких, в особенности астма - это распространенный диагноз, являющийся результатом недостаточного насыщения крови кислородом.

В здоровом теле уровень кислорода и углекислого газа должен балансировать друг с другом. Как только что-то из них начнет возрастать, или уменьшаться, это негативно скажется на общем состоянии человека.

Когда углекислого газа в крови становится больше, чем кислорода, это сопровождается следующими симптомами:

  • Склонностью к быстрому утомлению;
  • Безуспешными попытками к концентрации на чем-то.

В противном случае, когда кислорода поступает более, чем этого требуется, это также проявляется нездоровыми признаками:

Такое бывает с людьми, у которых продолжительное время было кислородное голодание, а после они длительный период провели на природе и свежем воздухе.

Образ жизни человека определяет, насколько хорошо его организм будет снабжен кислородом. Если для Вас привычна малая подвижность, редкие вылазки на природу, а также Вы избегаете пеших прогулок, то сатурация в крови станет низкой, а это угрожает здоровью.

Как было сказано ранее, сатурация исчисляется в процентном соотношении и отображает собой уровень насыщенности крови кислородом. Но как сдавать такой анализ?

Он называется пульсоксиметрией, так как прибор, используемый в данном исследовании это пульсоксиметр.

Недостаток кислорода в крови возникает:

  • При снижении уровня гемоглобина, либо его чувствительности к молекулам кислорода;
  • При нарушениях в работе легких, часто из-за отеков;
  • При нарушении дыхательной способности (апноэ - непроизвольная задержка дыхания; диспноэ - одышка, чувство нехватки воздуха);
  • При недостаточном поступлении крови в малый круг кровообращения;
  • При нарушенной циркуляции крови в большом круге;
  • При пороках сердца;
  • При нахождении в горах.

Главные симптомы сниженного содержания кислорода в крови:

При достаточном насыщении организма кислородом, заметно улучшается его работа и функционирование всех его систем и каждого органа. Метаболизм ускоряется, так же как и обменные процессы в клетках, благодаря чему человек чувствует себя бодрым и здоровым. Если Вы чувствуете, что возможно у Вас недостаток кислорода, то пересмотрите свой образ жизни.

Самый простой и эффективный способ - это начать бегать трусцой и выполнять элементарные физические упражнения. Также хорошо периодически заниматься дыхательной гимнастикой. Просто делайте быстрый вдох носом, и медленный выдох ртом, чтобы лишний углекислый газ поскорее покинул организм.

Проводите не менее двух часов в день на улице. Это должны быть парковые зоны, где нет проезжей части для машин.

Норма сатурации у детей

Нормальные показатели сатурации для детей равняются 95% и выше. Но, как показывает педиатрическая практика, обычно это значение намного меньше. Причина довольно проста, в детском организме происходит слабое накопление железа, гемоглобин также низок, отсюда сатурация в крови ниже нормы.

Сатурация – насыщение жидкости газами. В медицине под сатурацией понимают концентрацию кислорода в крови, которая выражается в процентном соотношении.

Каждая молекула гемоглобина способно переносить 4 молекулы кислорода. Сатурация крови кислородом - это усредненный процент насыщения молекулами кислорода молекул гемоглобина. При 100% сатурации говорят о наличии четырех прилепленных молекул кислорода к одной молекуле гемоглобина.

Для измерения кислородной сатурации крови используют пульсометры. Измеряется уровень гемоглобина в крови. При снижении объема красных телец наступает кислородное голодание, а при повышении – кровь загустевает и образуются тромбы, которые вызывают инфаркты.

Нормой гемоглобина в крови для детей считают 120-140 грамм в одном литре крови. Организм ребенка еще не накопил нужного объема железа, которое будет синтезировать в будущем красные тельца. По этой причине многие дети имеют пониженное содержание гемоглобина. Родители до 6 летнего возраста своего ребенка должны внимательно следить за уровнем гемоглобина – в этом возрасте у человека максимальная жизненная нагрузка и интенсивное развитие организма. Считается, что 90% всех знаний получены до 5-6 лет.

Низкая сатурация крови кислородом приводит к ослаблению сердечно-сосудистой и иммунной системы, замедляется работа мозга. В последствии не только ослабевает физическое состояние, но и наблюдается задержка умственного развития.

Нормой сатурации артериальной крови считаю 95-100%, а венозной – 75%. При 94% развивается гипоксия и требуются меры по ее предотвращению, менее 90% - ситуация критическая, пациент нуждается в экстренной медицинской помощи.

При низком уровне сатурации следует повысить объем вдыхаемого кислорода. Все последующие действия должны выполняться по правилу ABCDE:


  • AIRWAY – проверить проходимость дыхательных путей, проконтролировать ЭТТ, провести меры по купированию ларингоспазма.
  • BREATHING – проверить наличие дыхания, его частоту, дыхательный объем, аускультацию легких и, при необходимости, купировать бронхоспазм.
  • CIRCULATION – проверить кровообращение: контролировать пульс, артериальное давление, ЭКГ, выявить кровопотери и дегидратацию.
  • DRUG EFFECTS – взаимодействие препаратов могут вызвать низкую сатурацию крови кислородом (мышечные релаксанты, летучие анестетики, седативные, опиоиды).
  • EQUIPMENT – проверить работу оборудования по подаче кислорода, проходимость и герметичность дыхательного контура.

Сатурация часто развивается при поднятии на высоту от 2500 метров. В таких случаях говорят про развитие горной болезни. Она прекращается после снижения. Опытные спортсмены часто с ней сталкиваются и заранее готовятся к восхождению на большую высоту: выполняют физические упражнения, проходят профилактический курс лечения медикаментозными препаратами.

К индивидуальным факторам развития болезни относят:


  • индивидуальная устойчивость к недостатку кислорода (к примеру, жители гор);
  • физическая подготовка;
  • скорость поднятия на высоту;
  • длительность и степень кислородного голодания;
  • тренированность;
  • интенсивность физических упражнений.

Существует ряд факторов, провоцирующих снижение кислорода в крови:

  • кофеин и алкоголь в крови;
  • переутомление, бессонница и стресс;
  • переохлаждение;
  • плохое питание;
  • обезвоживание и нарушение водно-солевого баланса;
  • повышенный вес тела;
  • кровопотери;
  • респираторные и некоторые хронические заболевания: хроническая форма гнойных стоматологических заболеваний, пневмония, бронхит, ангина.

Больным следует постоянно контролировать сатурацию крови кислородам пульсоксометром. Для анализа забор крови не производится. Аппарат основан на дифференцированном поглощении света. Гемоглобин с разной насыщенностью кислорода поглощает свет разной длины.

Степень насыщения крови кислородом является одним из главных параметров нормального функционирования организма. От него зависит . Выявить данный показатель можно с помощью специального метода. Называется он пульсоксиметрия.

В легких человека имеется мощная капиллярная сеть. Все эти капилляры поглощают кислород из поступающего воздуха. Эритроциты же доставляют его к тканям, обеспечивая тем самым их насыщение. В каждом эритроците содержится гемоглобин, который связывает по четыре кислородных молекулы.

Процент насыщения кислородом кровяных клеток называется сатурацией. У здоровых людей этот показатель составляет примерно 95-98%. Этого достаточно для нормального дыхания тканей. Сатурация является важным параметром. По нему определяют , наличие патологий в организме человека, используя для этих целей специальный прибор.

Действие

Сатурацию определяют прибором, называемым пульоксиметром. Его действие основано на изменении длины волны света, поглощаемого гемоглобином, в зависимости от степени насыщения последнего кислородом. Прибор состоит из светового источника, набора датчиков, анализатора и детектора.

Красные и инфракрасные волны от источника поступают в кровь, где поглощаются гемоглобином. Насыщенный кислородом гемоглобин поглощает волны инфракрасного спектра, а ненасыщенный – красного. Количество непоглощенного света регистрирует детектор. Полученная информация отображается на мониторе. Пульсоксиметрия является абсолютно безопасным и непродолжительным методом и занимает не более 20 секунд.

Способы

В настоящее время широко распространены два способа пульсоксиметрии:

  • отраженная;
  • трансмиссионная.

Трансмиссионный способ основан на проникновении через ткани светового потока. Принимающий датчик при этом располагают на противоположной излучателю стороне, например по обеим сторонам пальца, либо носа.

Принцип отраженной пульоксиметрии состоит в том, что непоглощенные световые волны отражаются и регистрируются прибором. Данный способ можно применять на любых участках человеческого тела. Следует отметить, что оба способа обладают практически одинаковой точностью.

Кислород, поступая в человеческий организм, не хранится там. А значит, через несколько минут голодания начинают проходить необратимые процессы, воздействующие на все жизненно важные органы. Это, несомненно, сказывается на самочувствии. Недостаток кислорода вызывает и мышления, слабость, головную боль, развивает в организме склонность к инфаркту, аритмии и гипертензии.

Область применения пульсоксиметрии достаточно широка. Во многих странах мира специальными приборами вооружены все кардиологи, терапевты и пульмонологи. На территории СНГ данный метод применяют только в реанимационных отделениях и при лечении экстренных больных. В основном это связано с высокой стоимостью пульсоксиметров.

Метод применяют во время операций, когда пациент находится под наркозом, а также у недоношенных младенцев, рискующих получить повреждения легких и глазной сетчатки по причине гипоксии.

Пульсоксиметрия назначается в следующих случаях:

  • анестезия во время операций;
  • восстановление после операций на сосудах;
  • дыхательная недостаточность;
  • нехватка кислорода во внутренних органах и крови;
  • остановка дыхания во время сна.

Бывают случаи, когда пульсоксиметрию проводят в ночное время. Это длительная многочасовая процедура, во время которой фиксируется около 30 тысяч показаний. Предназначена она в первую очередь людям страдающим нарушениями сна из-за остановок дыхания.

Алгоритм выполнения пульсоксиметрии в ночное время состоит из следующих мероприятий:

  • Фиксация приемника на запястье, а датчика на пальце одной руки. Включение прибора при этом происходит автоматически.
  • Всю ночь прибор находится на руке. Пациент записывает в дневник время и причину каждого ночного пробуждения.
  • При утреннем пробуждении пациент должен снять пульсоксиметр и отдать вместе с дневником врачу, который проанализирует полученные данные.

Анализ проводят с 22:00 до 8:00 следующего дня. Во время сна должны соблюдаться определенные условия: в помещении должна поддерживаться температура порядка 20-23оС, перед отходом ко сну запрещено употреблять чай, кофе и снотворные лекарства. Все действия пациента должны быть с точностью зафиксированы в дневнике. Показанием к назначению лечения является снижение уровня сатурации ниже 88%.

Ночную пульсоксиметрию проводят людям, страдающим ожирением второй степени и выше, имеющим хронические заболевания дыхательной системы, больным гипертонией и .

Норма

Процедура предназначена для определения доли кислорода в крови и измерения пульсовой частоты.

Норма пульсоксиметрии у взрослых и у детей одинакова и равна 95-98%. Венозная кровь должна содержать не менее 75% кислорода. Развитие гипоксии приводит к снижению этого параметра. Для его повышения применяется оксигенотерапия.

При приближении значения сатурации к 94% необходимо принимать неотложные меры, направленные на борьбу с гипоксией. Экстренная помощь требуется человеку, если значение данного параметра приближается к 90%. В момент, когда показатели пульсоксиметрии снижаются ниже критических значений, прибор издает звуковой сигнал. Пульсоксиметр реагирует на падение сатурации ниже 90%, замедление либо полное исчезновения пульса.

Пульсоксиметрия применяется для исследования только артериальной крови, так как именно она является главным транспортером кислорода в клетки тканей. Измерение венозной крови с этой точки зрения является нецелесообразным.

Виды

Исходя из места выполнения процедуры пульсоксиметры подразделяются на поясные, кистевые, стационарные и ночные. Стационарные аппараты используются в клинических условиях, состоят из множества датчиков и способны сохранять очень большие объемы информации.

Поясные приборы и аппараты с датчиками на кисти относятся к портативным. Среди них наибольшее распространение получили закрепляющиеся на пальце пульсоксиметры. Они обладают рядом преимуществ: простота в применении, возможность использования дома, удобное хранение ввиду малых размеров.

Развивающиеся медицинские технологии способствуют появлению новейших приборов диагностики и делают их доступными широкой аудитории. Уже не за горами тот день, когда переносные пульсоксиметры займут свое место во всех домашних аптечках рядом с термометрами, глюкометрами и тонометрами.





error: Контент защищен !!