Этанол химия. Этиловый спирт. Спирт этиловый медицинский - применение. Какие заболевания вызывает

ЭТИЛОВЫЙ СПИРТ (синоним: этанол, гидроксиэтан, алкоголь, винный спирт) - наиболее известный представитель класса спиртов, обладающий специфическим физиологическим действием на организм человека и животных. Этиловый спирт применяют в медицине как антисептическое средство, используют для растираний и компрессов, как растворитель при приготовлении жидких лекарственных форм и как консервирующее средство при изготовлении анатомических препаратов (см. Препараты анатомические). В биохимических, клинико-диагностических,санитарно-гигиенических лабораториях и в химико-фармацевтической промышленности этиловый спирт является одним из наиболее употребимых растворителей и реагентов. Как сырье или вспомогательный материал этиловый спирт используется более чем в 150 различных производствах, в том числе в пищевой и лакокрасочной промышленности, парфюмерии, в производстве порохов, кинопленки и фотопленки, а также в качестве сырья для получения ряда химических продуктов (например, этилацетата, хлороформа, этилового эфира). В некоторых странах этиловый спирт применяется как моторное топливо.

Благодаря спиртовому брожению (см.), осуществляемому с помощью микроорганизмов, образование этилового спирта из углеводов (см.) распространено как в природе, так и в быту и с древности освоено человеком. В малых количествах этиловый спирт содержится в природных водах, почве, атмосферных осадках, он найден в свежих листьях растений, молоке, тканях животных. Следы этилового спирта обнаружены в ткани головного мозга, мышцах, печени человека; в крови человека в норме содержится 0,03-0,04°/00 алкоголя.

Этиловый спирт С2Н5ОН - бесцветная гигроскопичная жидкость жгучего вкуса, с характерным (спиртовым) запахом; г°кипения 78,39°, t°UJl - 114,15°, удельный вес (при 20°) 0,789, коэффициент рефракции при 20°1,3614. Этиловый спирт легко загорается и горит слабоокрашенным пламенем, температура вспышки 14°, концентрационные пределы взрываемости паров этилового спирта в воздухе от 3 до 19 об%. Предельно допустимая концентрация этилового спирта в воздухе рабочей зоны составляет 1000 мг/м3. Подобно другим спиртам (см.), этиловый спирт в жидком состоянии сильно ассоциирован вследствие образования межмолекулярных водородных связей. Обычный этиловый спирт представляет собой азеотропную смесь (см. Азеотропные смеси) с водой (г°кипения 78,15°), содержащую 95,57% этанола, из которой при необходимости получают безводный, так называемый абсолютный, спирт. Этиловый спирт дает также азеотропные смеси со многими органическими жидкостями (бензолом, хлороформом, этилацетатом и др.). С водой, спиртами, этиловым эфиром (см.), глицерином (см.), ацетоном (см.) и многими другими растворителями этиловый спирт смешивается во всех соотношениях (с водой - с выделением тепла и уменьшением объема). Этиловый спирт растворяет многие органические и некоторые неорганические соединения, в лабораторной практике он служит одним из наиболее часто употребляемых растворителей (см.). С некоторыми неорганическими солями (см.) этиловый спирт образует кристаллосольваты, например СаС12 4С2Н5ОН, кристаллосольваты образуются также с этиловым спиртом и отдельными органическими соединениями (см.).

Для этилового спирта характерны химические свойства первичных спиртов. При окислении или каталитическом дегидрировании этиловый спирт превращается в ацет-альдегид (см. Альдегиды), а при более энергичном окислении - в уксусную кислоту (см.). Отщепление воды от этилового спирта при нагревании в присутствии катализаторов (серной кислоты, окиси алюминия) в зависимости от условий приводит к его превращению в этилен или диэтиловый эфир (см. Этиловый эфир). С карбоновыми и неорганическими кислотами или их производными этиловый спирт образует сложные эфиры (см.). Эта реакция широко используется для синтетических и аналитических целей. Обмен гидроксильной группы в молекуле этилового спирта на атом галогена (С2Н5ОН + НВг - С2Н5Вг + Н20) приводит к образованию этилгалогенидов - веществ, применяемых в органическом синтезе. При взаимодействии этилового спирта с галогенами в щелочной среде происходит так называемое галоформное расщепление: С2Н5ОН + 4Х2 + 6NaOH- СНХ3+HCOONa + 5NaX + 5Н20, где X - хлор, бром или йод. Галоформное расщепление используют для получения хлороформа (см.) и обнаружения этилового спирта (йодоформная проба). Со щелочными металлами (см.) этиловый спирт образует алкоголяты (этилаты): С2Н5ОН + Na -> -* C2H5ONa + V2H2. Хлорированием этилового спирта получают трихлорацетальдегид (хлораль): СН3СН2ОН + 4С12 -> -> СС13СНО + 5НС1.

Традиционным методом получения этилового спирта является сбраживание углеводсодержащего сырья (зерна, картофеля, мелассы). Суммарная реакция спиртового брожения (С6Н1206-> -> 2С2Н5ОН + 2С02) идет с высоким выходом этилового спирта (свыше 90%) и состоит из ряда стадий с постепенным расщеплением глюкозы (см.) или фруктозы (см.) до ацетальдегида, который восстанавливается до этилового спирта. Эту реакцию катализирует дрожжевая алкогольдегидрогеназа (КФ 1.1.99.8). Полученные разбавленные-растворы этилового спирта концентрируют перегонкой до образования спирта-ректификата (96-96,5 об. % С2Н5ОН). Крахмалистые материалы, используемые для получения этилового спирт,а предварительно подвергают осахариванию до глюкозы амилазой солода (см. Амилазы) и затем сбраживают дрожжами. В качестве углеводсодержащего сырья применяют также продукты гидролиза целлюлозы (см.) и отходы ее производства (сульфитные щелока). Этиловый спирт, полученный брожением сырья с высоким содержанием пектиновых веществ или лигнина, в качестве примеси содержит заметное количество метилового спирта (см.).

Большое практическое значение имеет также производство этилового спирта из этилена: СН2 - СН2 + Н20 + С2Н5ОН (реакция проходит при повышенной температуре и давлении и катализируется серной кислотой), а также прямой гидратацией этилена в присутствии кислотных катализаторов; этим методом в настоящее время в большинстве стран получают основное количество этилового спирта.

В организме человека этиловый спирт окисляется до ацетальдегида (см. Ук-сусный альдегид): СН3СН2ОН + НАД+ ^ СНдСНО + НАД Н + Н+. Эта реакция катализируется алкогольдегидрогеназой (КФ 1.1.1.1) печени; этот катализатор - первичный фермент метаболизма этилового спирта. Образовавшийся ацетальдегид окисляется (главным образом в печени) до уксусной кислоты, которая, превращаясь в ацетил-КоА, включается в обмен веществ (см. Трикарбоновых кислот цикл).

На организм человека этиловый спирт оказывает наркотическое и токсическое действие, вызывая вначале возбуждение, а затем резкое угнетение центральной нервной системы (см. Алкогольное опьянение). Систематическое употребление спиртных напитков даже в небольших дозах приводит к нарушению важнейших функций организма и тяжелейшему поражению всех органов и тканей, вызывает органические заболевания нервной и сердечно-сосудистой систем, печени, пищеварительного тракта, ведет к моральной и психической деградации личности (см. Алкоголизм, Алкоголизм хронический).

Степень повреждения, различная частота и темп прогрессирования поражения разных органов зависят от дозы и частоты приема алкоголя больным алкоголизмом. Наиболее характерными признаками алкогольной интоксикации, особенно в стадии ее обострения, является наличие при морфологическом исследовании биопсийного материала так называемого алкогольного гиалина в гепатоцитах и накопление промежуточных филаментов в цитоплазме эпителиальных и мезенхимальных клеток (последнее является морфологическим выражением расстройства белкового обмена). Нарушение липидного обмена при алкогольной интоксикации проявляется в накоплении включений жира в цитоплазме клеток разных органов. Наиболее характерными морфологическими проявлениями так называемой алкогольной болезни является сочетание признаков нарушения белкового и липидного обменов, выраженных микроциркуляторных расстройств в виде полнокровия сосудов, наличия плазморрагий и кровоизлияний; в экссудате преобладают полиморфно-ядерные лейкоциты и макрофаги с морфологическими признаками функциональной недостаточности, что подтверждает состояние иммунного дефицита у алкоголика (см. Иммуно логическая недостаточность).

Методы определения. Содержание этилового спирта в смесях с водой определяют по плотности растворов с помощью специальных таблиц (спиртометрия). Для химического обнаружения этилового спирта используют йодоформную пробу, которую, однако, можно применять лишь в отсутствие веществ, также образующих йодоформ (ацетальдегида, ацетона, молочной и пировиноградной кислот); образование этилового эфира бензойной кислоты С6Н5СООС2Н5, распознаваемого по характерному запаху (необходимо иметь в виду, что метиловый спирт дает аналогичную пробу), или образование этилового эфира гс-нитро-бензойной кислоты n-02NC6H4C00C2H5, определяемого по температуре плавления (57°); а также специфическую цветную реакцию ацетальдегида, образующегося окислением этилового спирта, со вторичными аминами и нитропруссидом натрия (проба Симона). Для определения этилового спирта применяют его легко получаемые эфиры с характерными температурами плавления (гс-нитробензойной кислоты, 3,5-динит-робензойной кислоты и др.). Для количественного определения содержания этилового спирта в водных растворах используют также рефрактометрию (см.) и спектр о фотометрию (см.) на основе пробы Симона. Большинство современных химических методов определения, этилового спирта в биологических жидкостях основано на его окислении и спектрофотометрическом измерении концентрации продуктов окисления либо титровании непрореагировавшего окислителя, чаще всего бихромата (см. Титриметрический анализ); из анализируемых образцов этиловый спирт предварительно изолируют отгонкой или диффузией (метод Видмарка и др.). Более специфичны ферментативные методы определения этилового спирта, основанные на его окислении алкогольдегидрогеназой и спектрофотометрировании образовавшегося НАД Н, а также определение этилового спирта с помощью газожидкостной хроматографии (см.). Эти методы применимы и для определения этилового спирта в выдыхаемом воздухе. Количественное определение этилового спирта в крови и моче является достоверным показателем интоксикации этиловым спиртом. Для проведения наиболее точного, специфичного и чувствительного измерения концентрации этиловый спирт с помощью газожидкостной хроматографии достаточно 2-5 мл крови или мочи. Для установления интоксикации этиловым спиртом применяют и другие количественные методы определения этанола, например метод Видмарка, титриметрический метод (титрование непрореагировавшего окислителя) и др.

Для количественного определения этилового спирта из вены берут 5-10 мл крови в небольшую пробирку (до краев) так, чтобы не оставалось воздуха. Проба мочи в таком же объеме берется из общего количества мочи, выпущенной в чистую емкость. Обработку кожи, посуды и инструментов производят нелетучим антисептиком, не содержащим этиловый спирт. Взятый материал может храниться не более 1 суток, обязательно в холодильнике.

Качественные пробы на этиловый спирт при подозрении на алкогольное отравление являются предварительными и неспецифичными, поэтому их результаты должны подтверждаться количественным определением этилового спирта. Пары этилового спирта в выдыхаемом воздухе обнаруживаются через 10-20 минут после его приема и в течение 1,2-20 часов, в зависимости от крепости алкогольного напитка и принятой дозы. Среди качественных проб на этиловый спирт наиболее распространена проба по Мохову и Шинкаренко с использованием индикаторных трубок. Запаянные с обоих концов стеклянные трубки содержат реагент оранжевого цвета - силикагель, обработанный раствором хромового ангидрида в концентрированной серной кислоте. Для проведения пробы концы трубки отламывают, и испытуемый в течение 20-30 секунд выдувает в трубку воздух. Под действием паров этилового спирта происходит восстановление ионов хрома, и оранжевая окраска реагента меняется на зеленую или голубую. Однако положительный результат может быть получен также при действии на реагент паров метилового спирта, ацетона (у больных сахарным диабетом), эфира и альдегидов. Пары бензина, уксусной кислоты, дихлорэтана, фенола окрашивают реагент в темно-коричневый цвет. Реже применяется проба Рапопорта, основанная на растворении в дистиллированной воде этилового спирта, содержащегося в выдыхаемом воздухе, и последующем его окислении перманганатом калия в присутствии серной кислоты. При этом происходит изменение окраски раствора. Эта проба также не специфична, так как положительный результат при ее применении может быть получен при растворении в воде паров эфира, ацетона, бензина, сероводорода, метилового спирта. Для определения присутствия этилового спирта в моче или цереброспинальной жидкости используют пробу Никлу, основанную на изменении окраски исследуемой жидкости с оранжевой на зеленую после последовательного добавления кристаллического перманганата калия и концентрированной серной кислоты.

Механизм токсического действия этилового спирта связан с его избирательным поражением центральной нервной системы, прежде всего нервных клеток коры больших полушарий (см. Алкогольное опьянение). Ряд веществ, поступивших в организм одновременно с этиловым спиртом снотворные барбитурового ряда, транквилизаторы, оксид углерода и др.), усиливает его действие. Вещества, повышающие основной обмен, обычно увеличивают скорость окисления этиловым спиртом в организме. К таким веществам относятся адреналин (см.), инсулин (см.), тироксин (см.) и др. Некоторые вещества являются прямыми антагонистами этилового спирта (фенамин, первитин и др.) и при поступлении в организм значительно ослабляют внешние проявления интоксикации этиловым спиртом.

На первом этапе интоксикации этиловым спиртом накапливается в крови, достигая максимума в среднем через 1-1,2 (фаза резорбции). После небольшого периода диффузного равновесия концентрации этилового спирта в крови и других жидкостях, в органах и тканях содержание спирта в крови постепенно снижается, одновременно в моче его концентрация возрастает (фаза элиминации).

Освидетельствование для установления алкогольного опьянения производится по направлению правоохранительных органов, суда и администрации учреждений. В акте освидетельствования должны быть указаны анамнестические сведения (предшествовавшие заболевания и травмы, периодичность приема этилового спирта, его переносимость, время последнего приема алкоголя и др.), данные объективного исследования - конституция и вес (масса) тела, результаты клинического обследования и психотехнических испытаний, результаты качественных проб на алкоголь и количественного определения этилового спирта в крови и моче. Проведение экспертизы состоит из двух этапов: врачебного освидетельствования, которое проводится, как правило, невропатологами или психиатрами, и химические исследования с целью обнаружения этилового спирта в организме.

«Методическими указаниями о судебно-медицинской диагностике смертельных отравлений этиловым алкоголем и допускаемых при этом ошибках» М3 СССР (1974) рекомендуется следующая ориентировочная токсикологическая оценка различных концентраций алкоголя в крови: менее 0,3%0 - отсутствие влияния алкоголя; от 0,3 до 0,5%0 - незначительное влияние алкоголя; от 0,5 до 1,5% - легкое опьянение; от 1,5 до 2,5% - опьянение средней степени; от 2,5 до 3% - сильное опьянение; от 3 до 5%0 - тяжелое отравление, может наступить смерть; от 5% и выше - смертельное отравление. Приведенная оценка применима лишь для фазы резорбции. В фазе элиминации состояние человека, принявшего алкоголь, может быть легче или тяжелее указанного выше, поэтому необходимо проводить сравнительную оценку содержания этилового спирта в крови и моче.

Отсутствие этилового спирта в крови и наличие его в моче свидетельствуют о факте приема этилового спирта, однако не позволяют установить степень алкогольной интоксикации. При сопоставлении концентрации этилового спирта в крови и моче можно ориентировочно определить время приема алкоголя.

Обнаружение этилового спирта при судебно-медицинском исследовании трупа имеет значение для диагностики смертельного отравления этиловым спиртом и для установления факта алкогольной интоксикации перед наступлением смерти. Необходимо определить концентрацию этилового спирта в трупе, собрать анамнестические данные, установить возраст умершего, собрать сведения об обстоятельствах смерти и т. д. Смертельной дозой считается 200-300 мл чистого этилового спирта, однако эта доза колеблется в зависимости от возраста, привыкания к этиловому спирту, состояния здоровья и др. Для людей, привычных к алкоголю, и хронических алкоголиков смертельная доза может быть выше в несколько раз. Смерть от отравления этиловым спиртом возможна на любой стадии алкогольной интоксикации. Средней смертельной концентрацией этиловым спиртом в крови считается 3,5-5%, а концентрация выше 5% является безусловно смертельной.

Отравление этиловым спиртом обостряет течение многих заболеваний и может способствовать наступлению смертельного исхода. Необходимо проводить дифференциальную диагностику смерти от острого отравления этиловым спиртом со смертью от заболевания (чаще сердечно-сосудистого), наступившей в состоянии острой алкогольной интоксикации. К установлению острого отравления этиловым спиртом в качестве причины смерти следует подходить с большой осторожностью и во всех случаях этот вывод тщательно аргументировать.

П. И. Новиков (1967) рекомендует для оценки количественного содержания этилового спирта в трупе брать для химического исследования кровь, мочу, содержимое желудка и цереброспинальную жидкость. Соотношение концентрации этилового спирта в этих жидкостях позволяет ориентировочно определять стадию алкогольной интоксикации, время приема этилового спирта и принятую дозу. Если судебно-медицинскому исследованию подвергается не весь труп, а лишь отдельные его части, можно определить концентрацию этилового спирта во внутренних органах или в мышцах с последующим пересчетом на содержание этилового спирта в крови. Необходимо помнить, что при гнилостном разложении в трупе происходит образование этилового спирта, концентрация которого может достичь 0,5-1%.

Библиогр.: Балякин В. А. Токсикология и экспертиза алкогольного опьянения, М., 1962; Каррер П. Курс органической химии, пер. с нем., с. 118, Л., 1960; Кольковски П. Колориметрический экспресс-метод полуколичест-венного определения этилового спирта, Лаборат. дело, № 3, с. 17, 1982; Новиков П. И. Экспертиза алкогольной интоксикации на трупе, М., 1967; Пауков В. С. и Угрюмов А. И. Патологоанатомическая диагностика алкоголизма, Арх. патол., т. 47, в. 8, с. 74, 1985; Полюдек-Фабини Р. и Б е й р и х Т. Органический анализ, пер. с нем., с. 54, Л., 1981; Руководство по судебно-медицинской экспертизе отравлений, под ред. Р. В. Бережного и др., с. 210, М., 1980; Серов В. В. и Лебедев С. П. Клиническая морфология алкоголизма, Арх. патол., т. 47, в. 8, с. 3, 1985; Солдатенков А. Т. и Сытинский И. А. Методы определения алкоголя в биологических жидкостях, Лаборат. дело, № 11, с. 663, 1974; Стабников В. H., Р о й т е р И. М., и Процюк Т. Б. Этиловый спирт, М., 1976; Уайт А. и др. Основы биохимии, пер. с англ., т. 2, с. 780, М.,

А. И. Точилкин; Р. В. Бережной (суд.).

Этанол (этиловый спирт, метилкарбинол, винный спирт или алкоголь, часто в просторечии просто «спирт») - одноатомный спирт сформулой C 2 H 5 OH, второй представитель гомологического ряда одноатомных спиртов, при стандартных условиях летучая, горючая, бесцветная прозрачная жидкость.

Биологическое действие

Одним из основных механизмов, определяющим биологическое (преимущественно токсическое) действие этилового спирта, является его мембранотропная активность, образование ацетальдегида, а также метаболические эффекты, обусловленные истощением пула восстановленного НАД.Н.

Влияние на клеточные мембраны

Первичным биологическим эффектом этилового спирта является действие его на клеточные мембраны. Это действие неспецифично и определяется полярным и неполярным взаимодействием его с мембранами клеток из-за наличия сильных водородных связей, образующихся в результате поляризации оксигрупп.

Такое взаимодействие удерживает этиловый спирт в водной фазе. Растворяясь в воде и, частично, в мембранных липидах, он вызывает разжижение (флюидизацию) клеточных мембран. При длительном воздействии этиловым спиртом увеличивается содержание холестерина в мембранах, изменяется структура фосфолипидного слоя, разжижение мембран клеток способствует возникновению их ригидности.

Кроме того, нарушается трансмембранный перенос ионов кальция, снижается возбудимость мембран.

Метаболизм и этанол

Механизмы биотрансформации этилового спирта приводят к образованию токсического ацетальдегида, а также к накоплению восстановленной формы НАД.Н.

Этанол, ферменты

Механизм метаболических нарушений при острой алкогольной интоксикации связывают с развитиемстресса и выбросом в кровь аденокортикотропных гормонов (АКТГ), глюкокортикоидов и адреналина.

При длительном воздействии этанола на организм на первый план выступает прямое действие этилового спирта на обмен белков, жиров и углеводов. Этиловый спирт и ацетальдегид задерживают и изменяют направление многих реакций энергетического обмена. Причиной этих нарушений считается смещение соотношения НАД.Н/НАД в сторону редуцированного коэнзима.

Не менее важное значение имеет повреждающее действие этилового спирта на субклеточные мембраны с повышением их проницаемости, торможением активности Na+ -, K+ -АТФаз и способности к захвату ионов кальция.

В печени, сердце и скелетных мышцах этиловый спирт уменьшает напряжение кислорода, активность глютамат- и малатдегидрогеназ, НАД.Н-цито-хромС-оксидоредуктазы, переключает дыхательную цепь на преимущественное окисление янтарной кислоты, снимая щавелевоуксусное ингибирование сукцинатдегидрогеназы.

Этанол и обмен липидов

Этиловый спирт, нарушая обмен липидов, вызывает накопление жира в печени - стеатоз. Он проявляется гепатомегалией, жировой инфильтрацией, распадом белков субклеточных структур и гидропической дистрофией гепатоцитов. В паренхиме органа содержание триглицеридов возрастает в 20-25 раз, как и фосфолипидов, холестерина и его эфиров.

Содержание триглицеридов возрастает тем интенсивнее, чем тяжелее алкогольная интоксикация. Поражение прогрессирует по схеме: жировая дистрофия → алкогольный гепатит → цирроз. Считается, что в развитии таких последствий влияния этанола, как гепатит, цирроз печени, кардиомиопатия, функциональные и структурные нарушения в ЦНС, важную роль играют нарушения обмена Ca++ из-за повреждения клеточных мембран. Массивное поступление его в клетку на фоне снижения активности Na+ и Ka+ -АТФаз приводит к структурно-функциональным сдвигам, вплоть до развития некроза.

Этанол и обмен витаминов

К метаболическим эффектам этилового спирта относится полигиповитаминоз, возникающий вследствие замедления всасывания и нарушения метаболизма многих витаминов. Этиловый спирт тормозит всасывание тиамина и уменьшает кишечно-печеночную циркуляцию фолиевой кислоты.

Ацетальдегид усиливает распад пиридоксаль-5-фосфата, т. к. происходит его вытеснение из связи с белками, вследствие чего он становится более доступным гидролитическому действию основной фосфатазы. Кроме того, этиловый спирт снижает концентрацию витамина А в печени и тормозит превращение его в активный ретинол.

Этанол и водно-солевой обмен

Алкоголь - один из неблагоприятных факторов, влияющих на водно-солевой обмен. При хронической алкогольной интоксикации изменяется баланс ионов и воды в тканях, что приводит к расстройствам сердечно-сосудистой, эндокринной и нервной систем. Нарушения водного и электролитного обмена не происходят изолированно, вне связи друг с другом.

Существенные сдвиги в содержании воды, натрия и калия в организме ставят под угрозу жизнь клетки. Молярная концентрация плазмы крови - наиболее важный показатель водно-солевого гомеостаза. Молярные концентрации внутрисосудистой интерстициальной и внутриклеточной жидкостей считаются одинаковыми, несмотря на то, что внутриклеточная жидкость содержит больше анионов. Это объясняется образованием так называемых поливалентных ионов и анионов при связывании анионов с протеинами. Такие поливалентные анионы выступают как осмотически активные единицы, уменьшающие число осмотически активных анионов.

Градиент молярных концентраций между жидкостными пространствами организма является одним из механизмов, осуществляющих поток воды между ними, - вода будет перемещаться в сторону водного пространства с большей молярной концентрацией. Ионы мочевины и Na+ не могут быть использованы каналами, проходимыми для воды, хотя радиус молекулы воды больше, чем радиус Na+ (0,15 нм и 0,1 нм соответственно).

Поступление воды в организм регулируется чувством жажды, а выделение воды почками регулируется нейрогуморальным путем при участии нейропептидного гормона - вазопрессина, образующегося в нейронах супраоптического ядра гипоталамуса. При этом установлено, что гормональный эффект вазопрессина осуществляется посредством аденилциклазной системы. При снижении молярной концентрации плазмы крови секреция вазопрессина прекращается и развивается водный диурез, при гидратации и повышении молярной концентрации плазмы крови секреция вазопрессина возрастает и вода задерживается в организме.

Этанол и гормоны

Обнаружено также, что этанол приводит к существенному снижению лютеинизирующего гормона (ЛГ) в сыворотке крови . Это позволяет предположить, что этанол снижает уровень ЛГ в сыворотке крови путем уменьшения выброса люлиберина из гипоталамуса. В настоящее время привлекательной представляется концепция, что снижение алкоголем уровня ЛГ опосредуется эндогенными опиатами, энкефалинами, эндорфинами. Согласно имеющимся данным, эндогенные опиаты принимают участие в функционировании обратной связи, поддерживающей продукцию ЛГ, поскольку было установлено, что налоксон, например, устраняет ингибирующее тестостерона на продукцию ЛГ. Таким образом, предполагается, что выделившиеся под влиянием алкоголя эндогенные опиаты усиливают ингибирование секреции ЛГ.

Введение алкоголя приводит к повышению активности печеночной тестостерон А-редуктазы. Это повышение активности фермента способствует усиленному метаболическому клиренсу тестостерона. Установлено также, что продукция тестостерона при этом снижается, следствием чего является уменьшение его концентрации в плазме крови. При этом обнаружен более высокий уровень периферического превращения тестостерона в эстрадиол при циррозе печени.

Очевидно, что ускорение превращения тестостерона вэстрадиол связано с возникновением портального шунта при циррозе печени, который повышает доставку тестостерона к периферическим тканям, способным осуществлять взаимопревращение стероидов. Существует аргументированное мнение, что этанол обладает выраженной способностью модифицировать деятельность гормональной системы организма.

Этанол и железы внутренней секреции

Нет практически ни одной эндокринной железы, функция которой не изменялась бы при развитии алкоголизма. Уровни воздействия этанола на эндокринные комплексы чрезвычайно разнообразны; это и влияние на секрецию рилизинг-факторов, изменение гормонпродуцирующей деятельности клеток гипофиза, поражени босинтетических систем клеток периферических эндокринных желез, количественные и качественные изменения метаболизма гормонов в печени, а также нарушение комплексообразования гормонов со специфическими рецепторами и с транспортными белками.

Естественно, что такое полигландулярное воздействие на эндокринную систему и широкий спектр поражения этанолом механизмов действия гормонов создает специфическую картину алкогольных эндокринопатий, многочисленность и взаимодействие которых часто не позволяет установить первичные и биологически более значимые эндокринные расстройства, которые могут носить этиопатогенетический характер для синдромологии алкоголизма.

К числу характерных гормональных нарушений, возникающих при хроническом употреблении этанола у мужчин, в частности, относятся, наряду с симптомами гипогонадизма, импотенция, бесплодие, феминизация и ряд других изменений.

Помимо центрального действия на системы, регулирующие и осуществляющие синтез гнадотропинов, токсический эффект этанола в отношении половых стероидов реализуется через непосредственное воздействие на стероидогенез. Показано, по крайней мере, несколько возможных механизмов ингибирования этанолом или ацетальгидом синтеза андрогенов в тестикулах.

Во-первых, алкоголь или его метаболиты могут угнетать непосреднно биосинтез тестостерона, снижая активность ферментов, участвующих в этом процессе. Во-вторых, окисление этанола и его метаболитов в тестикулах может вызывать увеличение отношения НАД.Н/НАД в клетках семенников. И наконец, этанол и его метаболиты могут взаимодействовать с гормональными рецепторами как опосредованно, так и независимо влиять на синтез цАМФ в тестикулах

Этанол существенно подавляет активность алкогольдегидрогеназы, увеличивает образование ацетальдегида, который не успевает окисляться в ацетат, и, накапливаясь в организме, определяет многие токсические эффекты алкоголя, приводящие к существенным изменениям метаболизма различных органов и тканей

Известно, что в норме цитозольный фермент алкогольдегидрогеназы (АДГ) превращает ацетальдегид в эндогенный этанол, содержание которого в крови невелико, но относительно постоянно. У больных алкоголизмом активность этого фермента в крови повышена как в периоды употребления, так и в период ремиссии. Вместе с тем при повышенной активности АДГ катализируемая ею реакция смещается в сторону образования ацетальдегида из этанола, что способствует его накоплению в организме.

В результате происходит запуск каскада биохимических реакций, приводящих к образованию и накоплению в тканях веществ, обладающих психотропным действием, способствующих формированию алкогольного абстинентного синдрома (ААС) и патологического влечения к алкоголю (ПВА). Исследования последних лет показали, что в качестве ингибитора активности АДГ является эмитин, который в терапевтических дозах (≈ 0,01 г) снижает активность АДГ в сыворотке крови и ослабляет ПВА.

Этанол и сердечно-сосудистая система

Изучение особенностей поражения миокарда у пожилых больных, страдающих алкоголизмом (АЛГ), показало, что при высоком уровне толерантности к этанолу поражение миокарда происходит по типу алкогольной кардиомиопатии, которой сопутствуют атеросклеротические поражения сосудов сердца и аорты. При относительно невысоком уровне толерантности у больных АЛГ пожилого возраста развитие патологии миокарда идет по атеросклеротическому типу. Наличие так называемых «светлых промежутков» при запойных формах АЛГ в определенной степени тормозит развитие токсически обусловленных патологических изменений в миокарде и печени.

Определение артериального давления (АД) в течение суток у мужчин в возрасте 36 лет, регулярно принимающих этанол более 80 г/сутки, показало, что фаза наркотического действия этанола характеризуется нормализацией АД, в то время как при снижении уровня алкоголя в организме до фоновых значений наблюдается артериальная гипертензия . Отказ от потребления алкоголя на третьи сутки нормализовал суточный профиль АД без антигипертензивной терапии.

Результаты эпидемиологических исследований умеренного потребления алкоголя при заболеваниях сосудов показали, что прием этанола в дозе 12-24 г/сутки ведет к снижению заболеваемости и смертности от ишемической болезни сердца (ИБС). В то же время злоупотребление алкоголем, наоборот, ведет к росту патологии как коронарных, так и периферических сосудов. Однако необходим взвешенный подход к рекламации умеренного потребления этанола для профилактики ИБС.

Литература

Баженова А. Ф., БаженовЮ. И., Крайнова Е. Б. Влияние этанола на потребление кислорода различными органами и тканями в раннем онтогенезе белых крыс // Физиология организмов в нормальном и экстремальном состояниях: Сб. ст. Томск, 2001.

Баженова А. Ф., Виноградова Е. В., Инокова Н. Н. Влияние алкоголя на по- требление кислорода тканями белых крыс // Физиологические механизмы природных адаптаций: Сб. ст. Иваново, 1999. Ю. И. Баженов, А. Ф. Баженова, Я. Ю. Волкова Влияние этанола нафизиологические функции организма

БаженовЮ. И., Катаева Л. Н., Краснова Т. А. Влияние алкогольной инток- сикации взрослых белых крыс на эритропоэз их потомства на ранних этапах постна- тального онтогенеза // Эколого-физиологические проблемы адаптации: Материалы X Международного симпозиума. М., 2001.

БуровЮ. В., Ведерникова Н. Н. Нейрохимия и фармакология алкоголизма. М., 1985.

Жихарева А. И., Абубакирова О. Ю. Механизм повреждающего действия алкоголя на печень // Физиология организмов в нормальном и экстремальном состоя- ниях: Сб. ст. Томск, 2001.

Жиров И. В., Огурцов П. П., Шелепин А. А. Изменение суточного профиля артериального давления под влиянием систематического потребления алкоголя // Вестн. Рос. ун-та дружбы народов. Сер. Медицина. 2000. № 3. . Кершегольц Б. М. Этанол и его метаболизм в высших организмах. Якутск, 1990.

Этиловый спирт можно узнать по запаху. Впрочем, отличить его таким образом можно лишь от весьма далеких по структуре веществ. Что же касается соединений одной с ним группы, все сложнее. Но это и интереснее.

Состав и формула

Этанол - а именно так звучит одно из его официальных названий - относится к простым спиртам. Он знаком практически всем под теми или иными наименованиями. Часто его называют просто спиртом, иногда прибавляют прилагательные "этиловый" или "винный", химики могут также назвать его метилкарбинолом. Но суть одна - С 2 Н 5 ОН. Эта формула знакома, пожалуй, практически всем еще со школьных времен. И очень многие помнят, насколько это вещество подобно своему ближайшему родственнику - метанолу. Проблема лишь в том, что последний крайне токсичен. Но об этом позже, сначала стоит рассмотреть подробнее этанол.

Кстати, в химии есть много похожих терминов, так что не стоит путать этиловый спирт, например, с этиленом. Последний является бесцветным горючим газом и совсем не похож на прозрачную жидкость с характерным запахом. А еще есть газ этан, и его название тоже созвучно с наименованием "этанол". Но это тоже совсем разные вещества.

Метиловый и этиловый

Уже долгие годы остается актуальной проблема массовых отравлений в связи с невозжностью отличить в домашних условиях два спирта. Контрафактный алкоголь, подпольное или просто некачественное производство - все это повышает риск плохой очистки и пренебрежения технологическими условиями.

Все это усложняется тем, что по своим основным свойствам метиловый и этиловый спирты - практически идентичные вещества, и неспециалист без нужного оборудования просто не сможет отличить один от другого. При этом смертельная доза метанола - 30 граммов, тогда как в случае с обычным спиртом такой объем совершенно безопасен для взрослого человека. Именно поэтому, если нет уверенности в происхождении напитка, лучше его не употреблять.

Что любопытно, антидотом для технического спирта является как раз чистый метанол. Так что, заметив признаки острого отравления, необходимо ввести раствор последнего внутривенно или принять перорально. Важно при этом не перепутать состояние интоксикации метанолом с обычным сильным алкогольным опьянением или отравлением. В этом случае, а также при отравлении некоторыми другими веществами ни в коем случае нельзя принимать дополнительно спирт этиловый. Цена ошибки может быть очень высокой.

Физические и химические свойства

Этанолу присущи все общие характеристики и реакции спиртов. Он бесцветный, обладает характерными вкусом и запахом. В нормальных условиях он жидкий, переходит в твердую форму при температуре -114 о С, а кипит при +78 градусах. Плотность спирта этилового составляет 0,79. Хорошо смешивается с водой, глицерином, бензолом и многими другими веществами. Легко улетучивается, так что хранить его нужно в хорошо закрывающихся емкостях. Сам является прекрасным растворителем, а также обладает отличными антисептическими свойствами. Очень огнеопасен как в жидком, так и в парообразном состоянии.

Этанол является психоактивным и наркотическим веществом, входит в состав всех спиртных напитков. Смертельной дозой для взрослого человека является 300-400 миллилитров 96 % раствора спирта, употребленного в течение часа. Эта цифра довольно условна, поскольку зависит от большого количества факторов. Для детей достаточно уже 6-30 миллилитров. Так что этанол является и достаточно эффективным ядом. Тем не менее, он широко используется, поскольку обладает рядом уникальных свойств, делающих его универсальным.

Разновидности

Существует несколько видов этилового спирта, используемых для разных целей. В основном они отражают способы получения вещества, но часто говорят и о различных методах обработки.

Так, надпись на упаковке "Спирт этиловый ректификованный" говорит о том, что содержимое прошло специальную очистку от примесей. Полностью очистить, например, от воды его довольно сложно, но можно максимально уменьшить ее присутствие.

Еще спирт может быть денатурированным. В этом случае все наоборот: к этанолу добавляют трудноустранимые примеси, делающие его непригодным для употребления внутрь, но не усложняющие применение по основному назначению. Как правило, в роли денатурата выступает керосин, ацетон, метанол и т. д.

Кроме того, различают спирт этиловый медицинский, технический, пищевой. Для каждой из этих разновидностей существует строгий стандарт, предусматривающий определенные критерии. Но о них поговорим чуть позже.

Кроме всего прочего, на упаковке часто указывается процент содержания. Это актуально, опять же, в связи с тем, что этанол сложно полностью очистить от воды, да и обычно в этом нет серьезной необходимости.

Получение

Производство этилового спирта предусматривает использование одного из трех основных способов: микробиологического, синтетического или гидролизного. В первом случае имеем дело с процессом брожения, во втором, как правило, задействуются химические реакции с применением ацетилена или этилена, ну а третий говорит сам за себя. Каждый из способов имеет свои плюсы и минусы, сложности и преимущества.

Для начала расмотрим этиловый спирт, который производится только для пищевых целей. Для его производства используется только метод брожения. В ходе этого процесса виноградный сахар распадается на этанол и двуокись углерода. Этот метод известен с глубокой древности и является наиболее естественным. Но он требует и большего количества времени. Кроме того, полученное вещество не является чистым спиртом и требует достаточного большого количества операций по обработке и очистке.

Для получения технического этанола брожение нецелесообразно, так что производители прибегают к одному из двух вариантов. Первый из них - сернокислая гидратация этилена. Она выполняется в несколько этапов, но есть и более простой метод. Второй вариант - прямая гидратация этилена в присутствии фосфорной кислоты. Эта реакция обратима. Впрочем, оба этих способа также несовершенны, и полученное вещество требует дальнейшей обработки.

Гидролиз - относительно новый метод, позволяющий получать этиловый спирт из древесины. Для этого сырье измельчается и обрабатывается 2-5 % серной кислотой при температуре 100-170 градусов по Цельсию. Этот метод позволяет получать до 200 литров этанола из 1 тонны древесины. По разным причинам гидролизный способ не слишком популярен в Европе, в отличие от США, где открывают все новые и новые заводы, работающие по этому принципу.

Стандарты

Весь этанол, который производится на предприятиях, должен соответствовать определенным стандартам. Для каждого способа получения и обработки есть свой, в котором указываются основные характеристики, которыми должен обладать конечный продукт. Рассматривается очень много свойств, например, содержание примесей, плотность спирта этилового, предназначение. Для каждой разновидности есть свой стандарт.

Так, например, синтетический технический спирт этиловый - ГОСТ Р 51999-2002 - делится на два сорта: первый и высший. Очевидное различие между ними - объемная доля этанола, которая составляет 96 % и 96,2 % соответственно. В стандарте под этим номером указывается как ректификованный, так и денатурированный этиловый спирт, предназначенный для использования в парфюмерной промышленности.

Для более прозаичной цели - применения в качестве растворителя - существует свой ГОСТ: Р 52574-2006. Здесь речь идет только о денатурате с разной объемной долей этанола - 92,5 % и 99 %.

Что же касается такого вида, как пищевой этиловый спирт, то для него действует ГОСТ Р 51652-2000, и у него есть целых 6 сортов: первый (96 %), высшей очистки (96,2 %), "Базис" (96 %), "Экстра" (96,3 %), "Люкс" (96,3 %) и "Альфа" (96,3 %). Здесь уже речь идет в первую очередь о сырье и некоторых других сложных показателях. Например, продукт марки "Альфа" вырабатывается только из пшеницы, ржи или их смеси.

До сих пор многие проводят, так сказать, параллели между двумя понятиями: спирт этиловый - ГОСТ 18300-87, который был принят еще в СССР. Этот стандарт давно утратил силу, что, однако, не мешает строить производство в соответствии с ним до сих пор.

Использование

Пожалуй, затруднительно найти вещество, которое имеет столь же широкое применение. Этиловый спирт так или иначе используется в очень многих отраслях производства.

Прежде всего, это пищевая промышленность. Самые разные алкогольные напитки - от вин и ликеров до виски, водки и коньяка - соджержат в своем составе упомянутый спирт. Но сам по себе в чистом виде этанол не используется. Технология предусматривает закладку сырья, например, виноградного сока и инициацию процесса брожения, а на выходе получается уже готовый продукт.

Еще одна область широкого применения - это медицина. Этиловый спирт 95 % в данном случае используется чаще всего, ведь он обладает прекрасными антисептическими свойствами, а также растворяет многие вещества, что позволяет с его помощью делать эффективные настойки, микстуры и прочие препараты. Кроме того, при разных видах наружного применения он способен как эффективно согревать, так и охлаждать организм. Нанеся его на кожу, можно быстро сбить высокую температуру тела на градус-полтора. И наоборот, энергичные растирания помогут согреться. Кроме того, при хранении анатомических препаратов также используется спирт этиловый медицинский.

Разумеется, еще одна область применения - это техника, химия и все, что с этим связано. Речь идет о лакокрасочных покрытиях, растворителях, очистителях и пр. Кроме того, этанол используется в промышленном производстве многих веществ или является сырьем для них (диэтиловый эфир, тетраэтилсвинен, уксусная кислота, хлороформ, этилен, каучук и многие другие). Спирт этиловый технический, естественно, совершенно непригоден в пищу, даже если он очищен.

Разумеется, во всех этих случаях речь идет о совершенно разные разновидности, каждая из которых имеет свои особенности. Так, пищевой спирт этиловый ректификованный вряд ли будут использовать для технических целей, тем более, что он облагается акцизом, а значит, его стоимость гораздо выше по сравнению с неочищенным. Впрочем, о ценообразовании речь пойдет отдельно.

Применение в новых технологиях

Все чаще в последние годы говорят об использовании этанола в качестве топлива. Этот подход имеет своих противников и сторонников, особенно часто речь об этом заходит в США. Дело в том, что американские фермеры традиционно выращивают много кукурузы, которая теоретически может служить прекрасным сырьем для того, чтобы получить спирт этиловый. Цена такого топлива однозначно будет ниже стоимости бензина. Этот вариант снимает вопрос зависимости многих стран от поставок нефти и цен на энергоносители, ведь производство спирта может располагаться где угодно. Кроме того, это безопаснее с точки зрения экологии. Впрочем, уже сейчас можно заметить использование этанола в этом качестве, но в гораздо меньших масштабах. Это спиртовки - специальные химические нагреватели, домашние мини-камины, а также многие другие приборы.

Это может быть действительно перспективным направлением работы в поисках альтернативных, возобновляемых и достаточно дешевых источников энергии. Проблема для России здесь состоит в менталитете. Достаточно сказать, что спиртовые фонари в Москве продержались недолго - работники, которые занимались их работой, просто выпивали сырье. И даже если топливо будет содержать различные примеси, совсем избежать отравлений вряд ли удастся. Впрочем, для РФ есть и другие поводы не стремиться к таким изменениям, поскольку переход на такой вид энергии грозит для страны серьезным снижением объема экспорта энергоносителей.

Действие на человеческий организм

В классификации СанПин этанол относится к 4 классу, то есть малоопасным веществам. Сюда же, кстати, относятся керосин, аммиак, метан и некоторые другие элементы. Но это не значит, что не стоит относиться к алкоголю несерьезно.

Этиловый спирт при употреблении внутрьсерьезно влияет на центральную нервную систему всех животных. Он вызывает состояние, называемое алкогольным опьянением, характеризующееся неадекватным поведением, заторможенностью реакций, снижением восприимчивости к различного рода раздражителям и т. д. При этом все сосуды расширяются, увеличивается теплоотдача, учащается сердцебиение и дыхание. В состоянии небольшого опьянения ясно видно характерное возбуждение, при повышении дозы сменяющееся угнетением центральной нервной системы. Как правило, после этого появляется сонливость.

В более высоких дозах может наступить алкогольная интоксикация, серьезно отличающая от картины, описанной ранее. Дело в том, что этанол является наркотическим веществом, но не используется в этом качестве, поскольку для эффективного усыпления нужны дозы, крайне близкие к тем, при которым наступает паралич жизненно важных центров. Состояние алкогольной интоксикации - как раз та грань, когда без оказания экстренной помощи человек может умереть, поэтому так важно отличать это от опьянения. При этом наблюдается что-то вроде комы, дыхание редкое и пахнет спиртом, пульс учащенный, кожа бледная и влажная, температура тела понижена. Необходимо немедленно обратиться за медицинской помощью, а также попробовать промыть желудок.

Регулярное употребление этанола может вызвать пагубное пристрастие - алкоголизм. Оно характеризуется изменением и деградацией личности, также страдают различные системы органов, прежде всего это касается печени. Существует даже характерное для алкоголиков "со стажем" заболевание - цирроз. В некоторых случаях оно даже приводит к необходимости пересадки.

Что касается наружного применения, этиловый спирт раздражает кожу, одновременно являясь эффективным антисептиком. Он также уплотняет эпидермис, поэтому его используют для обработки пролежней и других повреждений.

Реализация и ее особенности

Стандарты - это не единственное, с чем имеют дело те, кто производят спирт этиловый. Цена на разные сорта, марки и разновидности очень разнится. И это неспроста, ведь то, что предназначего для употребления в пищу - подакцизный товар. Обложение этим дополнительным налогом делает стоимость соответствующего ректификата заметно выше. Это позволяет в известной степени контролировать оборот спирта этилового в продаже, а также стоимость алкогольной продукции.

Кстати, это еще и вещество, подлежащее строгому учету. Поскольку этанол используется при производстве лекарств, медицинских манипуляциях и т. д., он в той или иной форме хранится в аптеках, больницах, поликлиниках и прочих учреждениях. Впрочем, это не означает, что устроившись на работу по соответствующей специальности, можно легко и незаметно получить в пользование хоть какое-то количество вещества. Учет этилового спирта производится с помощью специального журнала, а нарушение процедур является административным правонарушением и наказывается штрафом. Что пропажу заметят в самые короткие сроки.

Этиловый спирт или винный является широко распространённым представителем спиртов. Известно много веществ, в состав которых наряду с углеродом и водородом входит кислород. Из числа кислородсодержащих соединений мне интересен прежде всего класс спиртов.

Этиловый спирт

Физические свойства спирта . Этиловый спирт С 2 Н 6 О - бес­цветная жидкость со своеобразным запахом, легче воды (удель­ный вес 0,8), кипит при температуре 78°,3, хорошо растворяет многие неорганические и органические вещества. Спирт «ректи­фикат» содержит 96% этилового спирта и 4% воды.

Строение молекулы спирта .Согласно валентности элементов, формуле С 2 Н 6 О соответствуют две структуры:


Чтобы решить вопрос о том, какая из формул соответствует спирту в действительности, обратимся к опыту.

Поместим в пробирку со спиртом кусочек натрия. Тотчас начнётся реакция, сопровождающаяся выделением газа. Нетрудно установить, что этот газ - водород.

Теперь поставим опыт так, чтобы можно было определить, сколько атомов водорода выделяется при реакции из каждой мо­лекулы спирта. Для этого в колбу с мелкими кусочками натрия (рис. 1) прибавим по каплям из воронки определённое количе­ство спирта, например 0,1 грамм-молекулы (4,6 грамма). Выделяю­щийся из спирта водород вытесняет воду из двугорлой склянки в измерительный цилиндр. Объём вытесненной воды в цилиндре соответствует объёму выделившегося водорода.

Рис.1. Количественный опыт получения водорода из этилового спирта.

Так как для опыта была взята 0,1 грамм-молекулы спирта, то водорода удаётся получить (в пересчёте на нормальные условия) около 1,12 литра. Это означает, что из грамм-молекулы спирта нат­рий вытесняет 11,2 литра , т.е. половину грамм-молекулы, иначе го­воря 1 грамм-атом водорода. Следовательно, из каждой молекулы спирта натрием вытесняется только один атом водорода.

Очевидно, в молекуле спирта этот атом водорода находится в особом положе­нии по сравнению с осталь­ными пятью атомами водо­рода. Формула (1) не даёт объяснения такому факту. Согласно ей, все атомы водо­рода одинаково связаны с атомами углерода и, как нам известно, не вытесняются ме­таллическим натрием (нат­рий хранят в смеси углеводородов - в керосине). Наоборот, формула (2) отражает наличие одного атома, находя­щегося в особом положении: он соединён с углеродом через атом кислорода. Можно заключить, что именно этот атом водорода связан с атомом кислорода менее прочно; он оказывается более подвижным и вытесняется натрием. Следовательно, структурная формула этилового спирта:


Несмотря на большую подвижность атома водорода гидроксильной группы по сравнению с другими атомами водорода, этиловый спирт не является электролитом и в водном растворе не диссоциирует на ионы.


Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная группа - ОН, соединённая с углеводородным радика­лом, молекулярную формулу этилового спирта пишут так:

Химические свойства спирта . Выше мы видели, что этиловый спирт реагирует с натрием. Зная строение спирта, мы можем эту реакцию выразить уравнением:

Продукт замещения водорода в спирте натрием носит назва­ние этилата натрия. Он может быть выделен после реакции (пу­тём испарения избытка спирта) в виде твёрдого вещества.

При поджигании на воздухе спирт горит синеватым, еле за­метным пламенем, выделяя много тепла:

Если в колбе с холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с НВг (или смесью NаВг и Н 2 SО 4 , дающей при реакции бромистый водород), то будет от­гоняться маслянистая жидкость - бромистый этил С 2 Н 5 Вг:

Эта реакция подтверждает наличие гидроксильной группы в молекуле спирта.

При нагревании с концентрированной серной кислотой в каче­стве катализатора спирт легко дегидратируется, т. е. отщепляет воду (приставка «де» указывает на отделение чего-либо):

Эта реакция используется для получения этилена в лаборатории. При более слабом нагревании спирта с серной кислотой (не выше 140°) каждая молекула воды отщепляется от двух молекул спирта, вследствие чего образуется диэтиловый эфир - летучая легко воспламеняющаяся жидкость:

Диэтиловый эфир (иногда называемый серным эфиром) при­меняется в качестве растворителя (чистка тканей) и в медицине для наркоза. Он относится к классу простых эфиров - органи­ческих веществ, молекулы которых состоят из двух углеводород­ных радикалов, соединённых посредством атома кислорода: R - О - R1

Применение этилового спирта . Этиловый спирт имеет большое практическое значение. Много этилового спирта расходуется на получение синтетического каучука по способу академика С. В. Лебедева. Пропуская пары этилового спирта через специальный катализатор, получают дивинил:

который затем может полимеризоваться в каучук.

Спирт идёт на выработку красителей, диэтилового эфира, раз­личных «фруктовых эссенций» и ряда других органических ве­ществ. Спирт как растворитель применяется для изготовления парфюмерных продуктов, многих лекарств. Растворяя в спирте смолы, готовят различные лаки. Высокая теплотворная способность спирта обусловливает применение его в качестве горючего (автомобильного топлива = этанола).

Получение этилового спирта . Мировое производство спирта измеряется миллионами тонн в год.

Распространённым способом получения спирта является бро­жение сахаристых веществ в присутствии дрожжей. В этих низ­ших растительных организмах (грибках) вырабатываются особые вещества - ферменты, которые служат биологическими катали­заторами реакции брожения.

В качестве исходных материалов в производстве спирта берут семена злаков или клубни картофеля, богатые крахмалом. Крах­мал с помощью солода, содержащего фермент диастаз, сперва превращают в сахар, который затем сбраживают в спирт.

Учёные много работали над тем, чтобы заменить пищевое сырьё для получения спирта более дешёвым непищевым сырьём. Эти по­иски увенчались успехом.

В последнее время в связи с тем, что при крекинге нефти образуется много этилена, стали

Реакция гидратации этилена (в присутствии серной кислоты) была изучена ещё А. М. Бутлеровым и В. Горяиновым (1873), который предсказал и её промышленное значение. Разработан и внедрен в промышленность также метод прямой гидратации этилена пропусканием его в смеси с парами воды над твердыми катализаторами. Получение спирта из этилена очень экономично, так как этилен входит в состав газов крекинга нефти и других промышленных газов и, следовательно, является широкодоступным сырьем.

Другой способ основан на использовании в качестве исходного продукта ацетилена. Ацетилен подвергается гидратации по реакции Кучерова, а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс гидратации ацетилена с последующим восстановлением водородом на никелевом катализаторе в этиловый спирт может быть представлен схемой.

Гомологический ряд спиртов

Кроме этилового спирта, известны и другие спирты, сходные с ним по строению и свойствам. Все они могут рассматриваться как производные соответствующих предельных углеводородов, в молекулах которых один атом водорода заменён гидроксильной группой:

Таблица

Углеводороды

Спирты

Температура кипения спиртов в º С

Метан СН 4 Метиловый СН 3 ОН 64,7
Этан С 2 Н 6 Этиловый С 2 Н 5 ОН илиСН 3 - СН 2 - ОН 78,3
Пропан С 3 Н 8 Пропиловый С 4 Н 7 ОН или СН 3 - СН 2 - СН 2 - ОН 97,8
Бутан С 4 Н 10 Бутиловый С 4 Н 9 ОН илиСН 3 - СН 2 - СН 2 - ОН 117

Будучи сходны по химическим свойствам и отличаясь друг от друга по составу молекул на группу атомов СН 2 , эти спирты со­ставляют гомологический ряд. Сравнивая физические свойства спиртов, мы в этом ряду, так же как и в ряду углеводородов, на­блюдаем переход количественных изменений в изменения качест­венные. Общая формула спиртов данного ряда R - ОН (где R - углеводородный радикал).

Известны спирты, в молекулы которых входит несколько гидроксильных групп, например:

Группы атомов, обусловливающие характерные химические свойства соединений, т. е. их химическую функцию, называются функциональными группами.

Спиртами называются органические вещества, моле­кулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом .

По своему составу спирты отличаются от углеводородов, соот­ветствующих им по числу углеродных атомов, наличием кисло­рода (например, С 2 Н 6 и С 2 Н 6 О или С 2 Н 5 ОН). Поэтому спирты можно рассматривать как продукты частичного окисления угле­водородов.

Генетическая связь между углеводородами и спиртами

Произвести непосредственное окисление углеводорода в спирт довольно трудно. Практически проще это сделать через галогенопроизводное углеводорода. Например, чтобы получить этиловый спирт, исходя из этана С 2 Н 6 , можно сначала получить бромистый этил по реакции:


а затем бромистый этил превратить в спирт нагреванием с водой в присутствии щёлочи:


Щёлочь при этом нужна, чтобы нейтрализовать образующийся бромистый водород и устранить возможность реакции его со спиртом, т.е. сдвинуть эту обратимую реакцию вправо.

Подобным же образом метиловый спирт может быть получен по схеме:


Таким образом, углеводороды, их галогенопроизводные и спирты находятся между собой в генетической связи (связи по происхождению).

Спиртами (или алканолами) называются орга­нические вещества, молекулы которых содержат одну или несколько гидроксильных групп (групп -ОН), соединенных с углеводородным радикалом.

Классификация спиртов

По числу гидроксильных групп (атомности) спир­ты делятся на:

Одноатомные , например:

Двухатомные (гликоли), например:

Трехатомные , например:

По характеру углеводородного радикала выде­ляют следующие спирты:

Предельные , содержащие в молекуле лишь пре­дельные углеводородные радикалы, например:

Непредельные , содержащие в молекуле крат­ные (двойные и тройные) связи между атомами углерода, например:

Ароматические , т. е. спирты, содержащие в мо­лекуле бензольное кольцо и гидроксильную группу, связанные друг с другом не непосредственно, а через атомы углерода, например:

Органические вещества,содержащие в молекуле гидроксильные группы, связанные непосредственно с атомом углерода бензольного кольца, существенно отличаются по химическим свойствам от спиртов и поэтому выделяются в самостоятельный класс органических соединений-фенолы.

Например:

Существуют и полиатомные (многоатомные спирты),содержащие более трех гидроксильных групп в молекуле. Например, простейший шестиатомный спирт гексаол (сорбит)

Номенклатура и изомерия спиртов

При образовании названий спиртов к названию углеводорода,соответствующего спирту,добавляют (родовой) суффикс-ол.

Цифрами после суффикса указывают положение гидроксильной группы в главной цепи, а префиксами ди-, три-,тетра- и т.д.-их число:

В нумерации атомов углерода в главной цепи положение гидроксильной группы приоритетно перед положением кратных связей:

Начиная с третьего члена гомологического ряда, у спиртов появляется изомерия положения функциональной группы (пропанол-1 и пропанол-2), а с четвертого — изомерия углеродного скелета (бутанол-1, 2-метилпропанол-1). Для них характерна и межклассовая изомерия- спирты изомерны простым эфирам:

Давайте дадим название спирту, формула которого указана ниже:

Порядок построения названия:

1. Углеродная цепь нумеруется с конца к которому ближе находится группа –ОН.
2. Основная цепь содержит 7 атомов С, значит соответствующий углеводород — гептан.
3. Число групп –ОН равно 2, префикс – «ди».
4. Гидроксильные группы находятся при 2 и 3 атомах углерода, n = 2 и 4.

Название спирта: гептандиол-2,4

Физические свойства спиртов

Спирты могут образовывать водородные связи как между молекулами спирта, так и между молекулами спирта и воды. Водородные связи возникают при взаимодействии частично положительно заряженного атома водорода одной молекулы спирта и частично отрицательно заряженного атома кислорода другой молекулы.Именно благодаря водородным связям между молекулами спирты имеют аномально высокие для своей молекулярной массы температуры кипения.Так, пропан с относительной молекулярной массой 44 при обычных условиях является газом, а простейший из спиртов-метанол,имея относительную молекулярную массу 32, в обычных условиях-жидкость.

Низшие и средние члены ряда предельных одноатомных спиртов,содержащих от 1 до 11 атомов углерода-жидкости.Высшие спирты(начиная с C 12 H 25 OH) при комнатной температуре-твердые вещества. Низшие спирты имеют алкогольный запах и жгучий вкус,они хорошо растворимы в воде.По мере увеличения углеродного радикала растворимость спиртов в воде понижается, а октанол уже не смешивается с водой.

Химические свойства спиртов

Свойства органических веществ определяются их составом и строением. Спирты подтверждают общее правило. Их молекулы включают в себя углеводородные и гидроксильные группы, поэтому химические свойства спиртов определяются взаимодействием друг на друга этих групп.

Характерные для данного класса соединений свойства обусловлены наличием гидроксильной группы.

  1. Взаимодействие спиртов со щелочными и щелочноземельными металлами. Для выявления влияния углеводородного радикала на гидроксильную группу необходимо сравнить свойства вещества, содержащего гидроксильную группу и углеводородный радикал,с одной стороны, и вещества,содержащего гидроксильную группу и не содержащего углеводородный радикал,-с другой. Такими веществами могут быть,например, этанол (или другой спирт) и вода. Водород гидроксильной группы молекул спиртов и молекул воды способен восстанавливаться щелочными и щелочноземельными металлами(замещаться на них)
  2. Взаимодействие спиртов с галогеноводородами. Замещение гидроксильной группы на галоген приводит к образованию галогеналканов. Например:
    Данная реакция обратима.
  3. Межмолекулярная дегидратация спиртов- отщепление молекулы воды от двух молекул спиртов при нагревании в присутствии водоотнимающих средств:
    В результате межмолекулярной дегидратации спиртов образуются простые эфиры. Так, при нагревании этилового спирта с серной кислотой до температуры от 100 до 140°С образуется диэтиловый (серный) эфир.
  4. Взаимодействие спиртов с органическими и неорганическими кислотами с образованием сложных эфиров(реакция этерификации)

    Реакция этерификации катализируется сильными неорганическими кислотами. Например, при взаимодействии этилового спирта и уксусной кислоты образуется-этилацетат:

  5. Внутримолекулярная дегидратация спиртов происходит при нагревании спиртов в присутствии водоотнимающих средств до более высокой температуры,чем температура межмолекулярной дегидратации. В результате образуются алкены. Эта реакция обусловлена наличием атома водорода и гидроксильной группы при соседних атомах углерода. В качестве примера можно привести реакцию получения этена (этилена) при нагревании этанола выше 140°С в присутствии концентрированной серной кислоты:
  6. Окисление спиртов обычно проводят сильными окислителями, например, дихроматом ка­лия или перманганатом калия в кислой среде. При этом действие окислителя направляется на тот атом углерода, который уже связан с гидро­ксильной группой. В зависимости от природы спирта и условий проведения реакции могут обра­зовываться различные продукты. Так, первичные спирты окисляются сначала в альдегиды, а затем в карбоновые кислоты:
    При окислении вторичных спиртов образуются кетоны:

    Третичные спирты достаточно устойчивы к окислению. Однако в жестких условиях (сильный окислитель, высокая температура) возможно окисление третичных спиртов, которое происходит с разрывом углерод-углеродных связей, ближай­ших к гидроксильной группе.
  7. Дегидрирование спиртов. При пропускании паров спирта при 200-300 °С над металлическим катализатором, например медью, серебром или платиной, первичные спирты превращаются в аль­дегиды, а вторичные - в кетоны:

  8. Качествен­ная реакция на многоатомные спирты.
    Присутствием в молекуле спирта одновремен­но нескольких гидроксильных групп обусловлены специфические свойства многоатомных спиртов, которые способны образовывать растворимые в во­де ярко-синие комплексные соединения при взаимо­действии со свежеполученным осадком гидроксида меди (II). Для этиленгликоля можно записать:

    Одноатомные спирты не способны вступать в эту реакцию. Поэтому она является качествен­ной реакцией на многоатомные спирты.

Получение спиртов:

Применение спиртов

Метанол (метиловый спирт СН 3 ОН) - бесцветная жидкость с характерным запахом и температурой кипения 64,7 °С. Горит чуть голубоватым пламенем. Историческое название метанола - древесный спирт объясняется одним из путей его получения способом перегонки твердых пород дерева (греч. methy - вино, опьянеть; hule - вещество, древесина).

Метанол требует осторожного обращения при работе с ним. Под действием фермента алкогольдегидрогеназы он превращает­ся в организме в формальдегид и муравьиную кислоту, которые повреждают сетчат­ку глаза, вызывают гибель зрительного нерва и полную потерю зрения. Попадание в организм более 50 мл метанола вызывает смерть.

Этанол (этиловый спирт С 2 Н 5 ОН) - бесцветная жидкость с характерным запахом и температу­рой кипения 78,3 °С. Горюч. Смешивается с водой в любых соотношениях. Концентрацию (крепость) спирта обычно выражают в объемных процентах. «Чистым» (медицинским) спиртом называют про­дукт, полученный из пищевого сырья и содержа­щий 96 % (по объему) этанола и 4 % (по объему) воды. Для получения безводного этанола - «аб­солютного спирта» этот продукт обрабатывают ве­ществами, химически связывающими воду (оксид кальция, безводный сульфат меди (II) и др.).

Для того чтобы сделать спирт, используемый в технических целях, непригодным для питья, в него добавляют небольшие количества трудноот­делимых ядовитых, плохо пахнущих и имеющих отвратительный вкус веществ и подкрашивают. Содержащий такие добавки спирт называют дена­турированным, или денатуратом.

Этанол широко используется в промышленности для производства синтетического каучука, лекар­ственных препаратов, применяется как раствори­тель, входит в состав лаков и красок, парфюмерных средств. В медицине этиловый спирт - важнейшее дезинфицирующее средство. Используется для при­готовления алкогольных напитков.

Небольшие количества этилового спирта при попадании в организм человека снижают болевую чувствительность и блокируют процессы торможе­ния в коре головного мозга, вызывая состояние опьянения. На этой стадии действия этанола увели­чивается водоотделение в клетках и, следователь­но, ускоряется мочеобразование, в результате чего происходит обезвоживание организма.

Кроме того, этанол вызывает расширение крове­носных сосудов. Усиление потока крови в кожных капиллярах приводит к покраснению кожи и ощу­щению теплоты.

В больших количествах этанол угнетает дея­тельность головного мозга (стадия торможения), вызывает нарушение координации движений. Про­межуточный продукт окисления этанола в организ­ме - ацетальдегид - крайне ядовит и вызывает тяжелое отравление.

Систематическое употребление этилового спир­та и содержащих его напитков приводит к стой­кому снижению продуктивности работы головного мозга, гибели клеток печени и замене их соедини­тельной тканью - циррозу печени.

Этандиол-1,2 (этиленгликоль) - бесцветная вязкая жидкость. Ядовит. Неограниченно раство­рим в воде. Водные растворы не кристаллизуются при температурах значительно ниже О °С, что по­зволяет применять его как компонент незамерзаю­щих охлаждающих жидкостей - антифризов для двигателей внутреннего сгорания.

Пролактриол-1,2,3 (глицерин) - вязкая сиропо­образная жидкость, сладкая на вкус. Неограниченно растворим в воде. Нелетуч. В качестве составной ча­сти сложных эфиров входит в состав жиров и масел.

Широко используется в косметике, фармацевтиче­ской и пищевой промышленностях. В косметических средствах глицерин играет роль смягчающего и успо­каивающего средства. Его до­бавляют к зубной пасте, чтобы предотвратить ее высыхание.

К кондитерским изделиям глицерин добавляют для пре­дотвращения их кристаллиза­ции. Им опрыскивают табак, в этом случае он действует как увлажнитель, предотвращаю­щий высыхание табачных листьев и их раскрошивание до переработки. Его добавляют к клеям, чтобы предохранить их от слишком быстрого высыхания, и к пластикам, особенно к целлофану. В последнем случае глицерин выполняет функции пластификато­ра, действуя наподобие смазки между полимерными молекулами и, таким образом, придавая пластмассам необходимую гибкость и эластичность.






error: Контент защищен !!