Фитопрепараты промышленное производство технологический процесс. Приготовление фитопрепаратов. Новые технологии производства фитопрепаратов

К экстракционным препаратам наименьшей степени очистки (галеновым) относятся настои, отвары, настойки (в том числе гомеопатические матричные), экстракты, препараты свежего сырья. Суммарные препараты содержат сумму экстрактивных веществ, втом числе действующие (оказывают лечебное действие) и сопутствующие вещества (близкие к действующим веществам по растворимости и не оказывающие нежелательного действия на организм).

Суммарные фитопрепараты в минимальной степени освобождены от балластных веществ (смолы, дубильные идр.), оказывают мягкое действие, обусловленное всем комплексом соединений, входящих в их состав. Виды суммарных (галеновых) препаратов представлены нарис. 1.1.


Рис. 1.1. Суммарные (галеновые) фитопрепараты Настойки (tincturae)

Настойки - прозрачные жидкие спиртовые, водно-спиртовые извлечения из лекарственного растительного сырья, получаемые без нагревания и удаления экстрагента.

Из сухого стандартного растительного сырья, содержащего несильнодействующие вещества, настойки получают при соотношении сырья и готового продукта (масса/объем) 1:5, а из сырья, содержащего сильнодействующие вещества, - 1:10.

Большинство настоек получают, используя в качестве экстрагента 70% этанол, реже - 40% этанол (настойки красавки, барбариса, зверобоя, лапчатки идр.) и крайне редко - этанол других концентраций: 90% (настойки мяты, стручкового перца), 95% (настойка лимонника) идр.

Настойки широко применяются в лечебной практике как самостоятельные препараты для внутреннего и наружного применения, в сочетании с другими настойками, а также в составе микстур, капель, мазей, пластырей. Схема производства настоек представлена нарис. 1.2.


Для экстрагирования лекарственного растительного сырья при получении настоек используют методы дробной мацерации и перко- ляции, очистку извлечения проводят фильтрованием после отстаивания на холоде (при температуре 8 °С).

Приготовление экстрагента. Количества крепкого этанола и воды, необходимые для приготовления экстрагента заданной концентрации, рассчитывают с учетом явления контракции. Для расчетов используют таблицы для определения содержания этилового спирта в водно-спиртовых растворах Комитета стандартов, мер и измерительных приборов (в тексте - табл. ГОСТ):

Таблица 1. Плотность водно-спиртового раствора в зависимости от температуры и относительного содержания спирта (по массе).

Таблица II. Плотность водно-спиртового раствора в зависимости от температуры и относительного содержания спирта (по объему) при температуре плюс 20°С.

Таблица III. Относительное содержание спирта (по объему) в зависимости от показания стеклянного спиртомера и температуры раствора.

Таблица IV. Относительное содержание спирта (по объему) в зависимости от показания металлического спиртомера и температуры раствора.

Таблица V. Множители для определения объема этилового спирта при 20 °С, содержащегося в данном объеме водно-спиртового раствора, в зависимости от температуры.

Таблица VI. Объем спирта при 20°С, содержащегося в 1 кг водно-спиртового раствора в зависимости от содержания спирта в растворе (в процентах (под объему) при температуре + 20°С).

Метод дробной мацерации. Рассчитанное количество измельченного растительного сырья равномерно укладывают в перколятор (рис. 1.3) (3) на фильтр (4) из полотна, марли или ваты, каждую порцию слегка утрамбовывают деревянной палочкой. Уложенный материал прикрывают тонким слоем ваты или кусочком фильтровальной бумаги, либо небольшой марлевой салфеткой, сложенной вчетверо. Сверху помещают груз (кусочки фарфора или речную гальку) (2), чтобы растительное сырье не всплывало.

Перколятор с растительным сырьем укрепляют на штативе. Под перколятор помещают чистую сухую склянку-приемник с этикеткой, содержащей наименование приготовляемого препарата, фамилию и группу студента.

Экстрагент в перколятор можно подавать сверху или снизу, через сливной кран (5).

При наполнении сверху экстрагент в перколятор подают с такой скоростью, чтобы поверх материала сразу образовалось «зеркало» (1), т.е. неисчезающий постоянный слой жидкости. Далее прибавляют экстрагент так, чтобы он впитывался в материал сплошной массой, вытесняя воздух через открытый кран перколятора. «Зеркало» жидкости не должно исчезать (впитываться), иначе в растительный материал немедленно попадет воздух, препятствующий процессу экстракции. Когда экстрагент начнет вытекать из крана, его закрывают, вытекшую жидкость подают снова на сырье в перколятор и наливают еще столько экстрагента, чтобы над растительным материалом был слой жидкости толщиной 10-20 мм.

При наполнении снизу стеклянную воронку соединяют с длинным резиновым шлангом, второй конец которого соединен с нижним краном перколятора. Опустив воронку ниже перколятора, заполняют ее экстрагентом. Медленно поднимая воронку, вытесняют воздух из шланга и заставляют растворитель переливаться сплошным слоем в загруженный перколятор. Одновременно следует внимательно следить за своевременным прибавлением экстрагента в воронку. После вытеснения воздуха из перколятора и образования «зеркала» кран закрывают и воронку со шлангом отсоединяют.

Перколятор закрывают куском туго натянутого, смоченного водой пергамента поставляют намацерационную паузу, которая длится 24-48 ч.


По истечении мацерационной паузы открывают кран и сливают первую порцию извлечения В количестве 1/4 объема готового продукта. Оставшийся экстрагент подают на сырье до образования «зеркала». Через 1,0-1,5 ч извлечение снова сливают в таком же количестве, как в первый раз. В течение рабочего дня через равные промежутки времени производят всего четыре слива. Все порции извлечения объединяют.

Метод перколяции (от лат. percolare - обесцвечивать). Рассчитанное количество растительного сырья помещают в фарфоровую выпарительную чашку и смачивают равным количеством экстрагента,
хорошо перемешивают и уминают пестиком. При этом растительный материал должен сохранить сыпучесть и не содержать излишка экстрагента. Смоченный материал плотно закрывают и оставляют для набухания при комнатной температуре на 2-4 ч, изредка перемешивая. В учебных целях время набухания можно сократить.

Набухший растительный материал порциями укладывают в перко- лятор и заливают экстрагентом до «зеркала» (см. рис. 1.4).

Принцип перколяции состоит в экстрагировании растительного материала медленным и непрерывным током экстрагента, поступающего на сырье в перколяторе. Скорость добавления экстрагента должна быть равна скорости вытекания извлечения, чтобы толщина слоя свободной жидкости («зеркало») над материалом не изменялась.

Экстрагент вперколятор подается автоматически при помощи питателя - опрокинутой вверх дном склянки с экстрагентом, погруженной горлышком в экстрагент внутри перколятора. Между нижним краем горла питателя и поверхностью растительного материала должно оставаться расстояние 1-1,5 см. Иногда склянку удлиняют куском стеклянного дрота соответствующей длины, плотно вставляя его в горлышко склянки с помощью резинового кольца (рис. 1.4). Стеклянный дрот должен быть достаточного диаметра и не мешать вытеканию жидкости из питателя. Питатель поддерживает уровень жидкости в перколяторе на уровне нижнего края горлышка склянки или вставленного в него куска дрота.

Скорость вытекания извлечения из перколятора нужно отрегулировать нижним краном. Объем вытекающей жидкости за 1 ч должен составлять -I/12 часть рабочего объема перколятора (занятого сырьем).


Скорость сбора извлечения (перколяции) рассчитывают по формуле:

где d - диаметр перколятора, см; А - высота столба сырья, см.

В лабораторных условиях при малых загрузках сырья скорость перколяции удобнее рассчитывать в каплях. Конец перколяции (истощение сырья) определяют по обесцвечиванию перколята, отсутствию разницы в плотности перколята и чистого экстрагента, отрицательному результату пробы на действующие вещества в вытекающей из перколятора жидкости.

Настойки из свежего сырья. Для получения извлечения из свежего сырья используют мацерацию крепким спиртом (7 сут) или бисмаце- рацию. В последнем случае первая экстракция проводится 96% этанолом, что способствует дегидратации, в результате чего мембраны клеток становятся пористой перегородкой, для второй экстракции берут спирт меньшей концентрации (например, 20%). Время первой мацерации составляет 14 дней, второй - 7 дней.

Очистка извлечения. Полученные извлечения оставляют для отстаивания в холодильнике при температуре 8-10°С доследующего занятия. После отстаивания извлечение фильтруют и проводят оценку качества.

Рекуперация этанола из отработанного сырья. Отработанное растительное сырье удерживает значительное количество экстрагента- до 150% без отжима и до 50% после отжима. Чтобы избежать потерь экстрагента и сделать производство более рентабельным, этанол необходимо рекуперировать, т.е. возвратить в производство. Рекуперация осуществляется двумя способами: вытеснением этанола из отработанного сырья водой, отгонкой этанола из отработанного сырья путем перегонки с водяным паром.

При рекуперации этанола вытеснением водой на отработанное сырье в том же экстракторе (перколяторе) подают трех-, пятикратное количество воды. После настаивания в течение 2 ч рекуперат медленно сливают. При этом этанол вытесняется водой из кусочков сырья. Полученный рекуперат будет содержать 5-12% этанола, его цвет и запах будет соответствовать исходному сырью. Вместе с этанолом врекуперате будут присутствовать все растворимые компоненты извлечения, поэтому рекуперат после укрепления можно использовать как экстрагент для того же вида сырья.

Для рекуперации путем перегонки с водяным паром применяют те же перегонные установки, что и для получения эфирных масел и ароматных вод. Сырье помещают в перегонный куб, снабженный паровой рубашкой и барботером (трубка, через которую внутрь сырья подается пар), или в перегонную колбу, которая в течение всего процесса перегонки подогревается на водяной бане. При подаче пара через барботер этанол увлекается паром, охлаждается в конденсаторе и собирается в приемник. При перегонке с водяным паром получают рекуперат с содержанием этанола 15-25%. В отгон попадают летучие вещества исходного растительного сырья, поэтому он имеет специфический запах сырья, из которого получен.

Рекуперат также можно использовать для экстракции того же вида сырья.

Оценка качества. Согласно современным требованиям в настойках определяют подлинность и количество биологически активных веществ по методикам частных фармакопейных статей, тяжелые металлы (не более 0,001%), сухой остаток (сумма экстрактивных веществ), плотность при помощи ареометра или пикнометра, содержание этанола.

Сухой остаток и плотность настойки отражают содержание суммы экстрактивных веществ, что важно для суммарных (галеновых) препаратов. Кроме того, эти показатели свидетельствуют о правильности проведения экстракции.

Для определения содержания этанола в настойках неприемлемо использование стеклянных и металлических спиртомеров, поскольку их показания основаны на плотности жидкости. Плотность настоек определяется не только присутствующим в ней этанолом, но и комплексом экстрактивных веществ, наличие которых сильно влияет на показания спиртомера/ареометра. В связи с этим количество этанола в настойке определяют по температуре кипения (ГФ XI в. 1 с. 26, метод 2, см. приложение). В последнее время с этой целью используют также газово-жидкостную хроматографию.

Описание действия Чем воспользоваться Контроль
Подготовка

экстрагента

Необходимое количество экстрагента рассчитывают по формуле: Обучающая задача 1
Расчет необходимого количества экстрагента для получения заданного объема настойки V = V +т К

экст мает с сп,

где УЭКСТ - количество экстрагента, МЛ; Каст- заданное количество настойки, мл; тс - количество исходного сырья, г; А^п -■ коэффициент поглощения. В учебных целях можно использовать усредненные значения К^п: для травы, листьев- 2-3; для коры, корней, корневищ - 1,5

Щ^верка концентрации доходного этанола Исходный этанол помещают в цилиндр и определяют его концентрацию стеклянным спиртомером с учетом температуры. Если температура выше или ниже 20вС, то концентрацию устанавливают по табл. III ГОСТ Цилиндр объемом 50 мл, стеклянные спиртомеры или ареометры, термометр, таблицы для определения содержания этилового спирта вводно-спиртовых растворах


Стадии и операции технологического процесса Описание действия Чем воспользоваться Контроль
Приготовление экстрагента, проверка его концентрации Для приготовления нужного объема экстрагента необходимой концентрации путем разведения крепкого (исходного) этанола расчеты проводят по правилу смешения. Рассчитанное количество этанола (в миллилитрах) помещают в мерный цилиндр, разбавляют водой до получения нужного объема экстрагента (температура 20°С) Мерные цилиндры объемом 100, 250 мл Определение концентрации экстрагента спиртомером или ареометром. Точность разведения этанола ±0,5%
Подготовка растительного сырья Отвешивают рассчитанное количество стандартного растительного сырья Весы, разновес Должно отвечать требованиям нормиую- щей документации
Экстракция сырья В лабораторных условиях проводят в стеклянных перколяторах, имеющих сливной кран или резиновую трубку с зажимом и стеклянным наконечником. На дно перколятора помещают небольшой фильтр из кусочка ваты Штатив для перколятора, перколятор стеклянный вместимостью 200-250 мл, деревянная палочка-трамбовка Уровень этанола над сырьем 1-2 см. Измерение объема полученной настойки
hspace=0 vspace=0> 1. Технология фитопрепаратов
Стадии и операции технологического процесса Описание действия Чем воспользоваться Контроль
или вчетверо сложенной марли для предотвращения засорения крана. Перед началом работы перколятор снабжают этикеткой, содержащей фамилию и инициалы студента, номер группы, название препарата. Экстрагирование проводят дробной мацерацией или перколяцией
Рекуперация этанола из отработанного сырья Проводят вытеснением водой или перегонкой с водяным паром Прибор для перегонки с водяным паром Измерение объема рекуперата, определение концентрации этанола вреку- перате
Очистка извлечения Проводят путем отстаивания в течение нескольких суток при температуре не выше 8°С и последующего фильтрования Емкость для извлечения, холодильник, фильтр, фильтрующий материал Настойка должна быть прозрачной

МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ И СОЦИАЛЬНОГО РАЗВИТИЯ РФ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ»

Н. О. Карабинцева, С. Ю. Клепикова

Технология производства экстракционных фитопрепаратов

Учебно-методическое пособие

Новосибирск

Рецензенты

зав. кафедрой фармакогнозии с курсом ботаники НГМУ, д-р фарм. наук, профессор М. А. Ханина

зав. кафедрой управления и экономики фармации, медицинского и фармацевтического товароведения НГМУ, канд. фарм. наук, доцент И. А. Джупарова

Карабинцева, Н. О.

К21 Технология производства экстракционных фитопрепаратов: учеб.-метод. пособие / Н. О. Карабинцева, С. Ю. Кле- пикова.-Новосибирск:СибмедиздатНГМУ,2010.-130с.

Учебно-методическое пособие предназначено для самостоятельной и аудиторной подготовки студентов фармацевтического факультета очной и заочной форм обучения. В пособии приводятся информационные материалы по общим вопросам технологии производства экстракционных фитопрепаратов, определения мацерации, дробной мацерации, перколяции, реперколяции, экстракции; содержатся технологические и аппаратурные схемы производства, имеются тестовые и ситуационные задания для самоподготовки студентов.

УДК 615.451:66(075) ББК 35.66:42.143я73

© Карабинцева Н. О., Клепикова С. Ю., 2010

© НГМУ, 2010

Предисловие ................................................

Технология производства настоек.......................

Лабораторная работа № 1..............................

Лабораторная работа № 2..............................

Технология производства жидких экстрактов............

Лабораторная работа № 3..............................

Технология производства густых и сухих экстрактов.....

Лабораторная работа № 4..............................

Технология производства масляных экстрактов..........

Лабораторная работа № 5..............................

Приложения..............................................

ПРЕДИСЛОВИЕ

Настоящее учебно-методическое пособие составлено в соответствии с Государственным образовательным стандартом по специальности 060108 «Фармация» и программой по дисциплине «Фармацевтическаятехнология».Пособиепредназначенодляформирования умений и навыков, необходимых для практической деятельности провизора в области фармацевтической технологии готовых лекарственных средств.

В основу изложения материала положена модульная система, интегрированно отражающая взаимосвязь различных разделов дисциплины: процессов и аппаратов фармацевтической технологии, машин и оборудования, технологии готовых лекарственных форм, а также характеристик и производства исходных материалов - лекарственных и вспомогательных веществ.

Пособие включает теоретическое обоснование и описание лабораторных работ по следующим модулям: технология настоек, жидких, густых, сухих и масляных экстрактов. В основу модульной системы положены классификации лекарственных форм и технологические аспекты их получения.

Структура каждой темы отображает соответствующие разделы программы, теоретическую часть, которая включает: характеристику лекарственной формы и используемые технологические процессы, классификацию, описание основных технологических этапов получения, вспомогательные ингредиенты, а также лабораторные работы. Кроме того, в пособии представлены основные схемы оборудования с кратким описанием принципов работы, обучающие задачи (расчетные и ситуационные), а также тестовые задания.

Пособие способствует формированию у студентов знаний, умений и навыков, касающихся выбора рациональной технологии, стандартизации и упаковке соответствующих лекарственных форм, условий их хранения и применения.

ТЕХНОЛОГИЯ ПРОИЗВОДСТВА НАСТОЕК

Актуальность темы. Настойки пользуются большой популярностью среди населения, это связано с тем, что растительные спиртосодержащие лекарственные препараты содержат неповторимые по составу сочетания биологически активных веществ, обеспечивающие широкий спектр лечебно-профилактического действия.

Цель занятия:

- приобрести навыки по получению настоек из различных видов лекарственного сырья; овладеть методами мацерации и перколяции; научиться рассчитывать практический выход препарата; научиться оценивать результаты работы с использованием справочной литературы; приобрести навыки по составлению аппаратурной схемы производства настоек.

Студент должен

иметь представление:

- о значении фармацевтической технологии в современной фармацевтической практике;

- об основных направлениях, подходах и методологических принципах современного изготовления и производства лекарственных препаратов;

- характеристику основных видов сырья, используемых в производстве настоек;

- теоретические основы экстрагирования;

- расчет необходимого количества экстрагента (этанола);

- способы производства настоек;

- номенклатуру и особенности технологии настоек;

- стандартизацию настоек и общие методы испытания;

- технику безопасности при работе в фитохимической лабо-

- провести расчет необходимого количества сырья и экстрагента для выполнения поставленной задачи;

Приготовить спирто-водный раствор нужной концентрации;

- измельчить лекарственное сырье;

- осуществить загрузку перколятора;

- проводить процесс перколяции;

- проводить процесс отстаивания и фильтрации вытяжки;

- оформить полученную продукцию.

владеть навыками:

- получения настоек на фармацевтических производствах;

- постадийного контроля качества и стандартизации лекарственных препаратов и лекарственных средств;

- выбора оптимальных условий хранения лечебно-диагнос- тических препаратов и оценки их качества в процессе длительного хранения.

Вопросы для самоподготовки:

1. Общая характеристика экстракционных препаратов.

2. Теория экстрагирования. Движущие силы. Роль молекулярной и конвективной диффузии. Динамика процесса экстрагирования.

3. Экстрагенты: требования, классификация. Рациональный выбор экстрагента.

4. Настойки, характеристика как лекарственной формы.

5. Технологическая схема процесса.

6. Методы получения настоек.

7. Используемая аппаратура.

8. Мацерация.

9. Перколяция.

10. Интенсификация процесса экстрагирования.

11. Очистка настоек: отстаивание, фильтрование, центрифуги-

12. Стандартизация настоек:

- органолептические показатели;

Плотность;

- определение концентрации этанола;

- определение количества действующих веществ;

- определение сухого остатка;

- определение тяжелых металлов.

13. Рекуперация этанола из отработанного сырья.

14. Упаковка. Условия и правила хранения настоек.

15. Классификация настоек. Частная технология. Особые случаи (настойка мяты).

Информационный материал для подготовки

Настойки (Tincturae ) представляют собой окрашенные жидкие спиртовые, или водно-спиртовые извлечения из лекарственного растительного сырья, получаемые без нагревания и удаления экстрагента.

Настойки - лекарственная форма, введенная в медицинскую практику Парацельсом (1493–1541), не утратившая своего значения до настоящего времени. Они официальны по ГФ XI.

При изготовлении настоек из 1 весовой части растительного сырья получают 5 объемных частей готового продукта, из сильнодействующего сырья - 10 частей. В отдельных случаях настойки готовят (1:10) из сырья, не содержащего сильнодействующих веществ (арника, календула, боярышник) и в других соотношениях.

Настойки могут быть простыми, получаемыми из одного вида сырья, и сложными, представляющими смесь извлечений из нескольких растений, иногда с добавлением лекарственных веществ. Для получения настоек чаще используют высушенный растительный материал, а в некоторых случаях – свежее сырье.

Теоретические основы экстрагирования

Процесс экстрагирования относится к массообменным и определяется основными законами массопередачи: молекулярной диффузией, массоотдачей, массопроводимостью.

При экстрагировании процесс массопередачи происходит в системах твердое тело - жидкость или жидкость - жидкость. В фармацевтической промышленности наиболее широко распространена экстракция в системе твердое тело - жидкость. Экстракция в системе жидкость - жидкость применяется при очистке получаемых вытяжек из лекарственного сырья или для выделения индивидуальных веществ.

Экстрагирование твердых материалов представляет собой процесс разделения твердого тела на растворимую и нерастворимую части. В отличие от процесса растворения, когда переход вещества в раствор происходит полностью, при экстрагировании он осуществляется частично, образуя две фазы: раствор веществ в сырье и раствор экстрактивных веществ в экстрагенте, омывающем сырье.

Переход веществ из одной фазы в другую осуществляется до тех пор, пока они имеют разную концентрацию, являющуюся движущей силой процесса экстрагирования. Предельным состоянием массобмена является достижение равновесия системы, выравнивание скорости перехода веществ из одной фазы в другую и обратно при данных условиях.

Перенос веществ в экстрагент осуществляется молекулярной и конвективной диффузией.

Молекулярная диффузия обусловлена беспорядочным движением молекул, граничащих друг с другом и находящихся в макроскопическом покое. Математическое выражение молекулярной диффузии, определяющей скорость процесса, представлено уравнением первого закона Фика:

dM d τ = − DF dx dc ,

где d τ -скоростьдиффузии,кг/м;dc -разностьконцентрацийна границеразделафаз,кг/м3 ;dx -изменениетолщиныдиффузионного слоя, м2 ; D - коэффициент молекулярной диффузии - показывает количество вещества (кг), которое диффундирует в единицу времени (с), через единицу площади (м2 ), при разности концентраций, равной единице (кг/м3 ) и толщине слоя - 1 м; знак (–) означает направление процесса в сторону уменьшения концентрации (из клетки).

Скорость молекулярной диффузии зависит от температуры, радиуса диффундирующих молекул вещества, вязкости среды.

Конвективная диффузия - это перенос вещества в виде небольших объемов раствора. Математическое выражение скорости диффузии представлено уравнением:

dM d τ = − β F dx dc ,

где β - коэффициент конвективной диффузии. Он показывает, какое количество вещества передается через 1 м2 поверхности фазового контакта в воспринимающую среду в течение 1 с при разности концентрации между слоями, равной единице.

Конвективная диффузия может быть естественной и принудительной. Естественная (свободная) происходит за счет разности плотностей экстрагента и раствора, изменения температуры и гидростатического столба жидкости. Принудительная возникает при перемешивании мешалками, насосами, вибрацией. Коэффициент конвективной диффузии определяется опытным путем и зависит от гидродинамических условий проведения процесса, а ее скорость в 1012 раз выше молекулярной. Конвективная диффузия представляет больший практический интерес, так как способствует интенсификации процесса массообмена.

Экстрагирование растительного сырья. Процесс экстраги-

рования высушенного растительного сырья является многостадийным и начинается с проникновения экстрагента в материал, смачивания веществ, находящихся внутри клетки, растворения и десорбции их, вымывания клеточного содержимого из разрушенных клеток, диффузией через поры клеточной оболочки и заканчивается массопереносом веществ от поверхности материала в раствор.

Проникновение экстрагента . Оболочки клеток обладают ди-

фильными свойствами, с преобладанием гидрофильности. Процесс проникновения экстрагента в клетку определяется степенью гидрофильности материала, природой экстрагента, числом и размером пор в клеточной стенке.

Смачивание веществ. Процесс смачивания веществ тесно связан с проникновением экстрагента в сырье и зависит от их сродства. Поступая в сырье по макро- и микротрещинам, межклеточным ходам, диффузией через поры клеточной оболочки, экстрагент проникает внутрь клетки и контактирует с высохшим клеточным соком. Дляоблегченияпроникновенияэкстрагентаиулучшениясмачивания содержимого клеток рекомендуется добавлять ПАВ (иногда достаточна концентрация 0,01–0,1 %), обеспечивающие снижение поверхностного натяжения на границе раздела фаз.

Растворение биологически активных веществ раститель-

ного материала. По мере поступления экстрагента в сырье происходит десорбция и растворение биологически активных веществ, которые определяются их сродством. Скорость растворения зависит

от скорости массопередачи от поверхности твердого тела, а для веществ, находящихся внутри клеток, определяется скоростью массопередачи через пористую перегородку сначала в экстрагент межклеточного пространства, а затем - в омывающий сырье.

Массоперенос веществ через пористые клеточные мембра-

ны. Массоперенос растворенных в клеточном соке веществ через поры клеточных стенок в межклеточные пространства и далее на поверхность растительного материала осуществляется путем внутренней диффузии. Ее скорость определяется разностью концентра по обе стороны клеточной стенки, зависит от толщины и количества слоев клеточных мембран, числа и диаметра пор, которые не бывают постоянными, а колеблются в широких пределах у разных видов растительного сырья. Перенос вещества с поверхности клеток происходит за счет свободной молекулярной диффузии Скорость диффузии в этом случае можно выразить следующим образом:

dM dF = − D ВН dxdc ,

где х - толщина слоя, через который проходит диффузия. Одновременно с поступлением экстрагента в сырье образуется

встречный поток жидкости с растворенными в ней биологически активными веществами. Общая скорость экстрагирования определяется как разность скоростей движения экстрагента и раствора.

Массопередача вещества от поверхности растительного материала в экстрагент. В настоящее время предложено несколько теорий для объяснения этого процесса, например, пленочная теория массоотдачи веществ и теория диффузионного слоя.

Согласно пленочной теории массоотдача веществ происходит путем молекулярной диффузии через неподвижную пленку экстрагента, находящегося на поверхности материала. Вещества с поверхности растительного сырья переносятся в поток экстрагента путем свободной молекулярной диффузии, скорость которой зависит от площади и толщины пленки.

По теории диффузионного слоя на поверхности сырья имеется пристенный, пограничный (ламинарный) слой, в который переносятся вещества из пор растительного материала. Скорость массопереноса в большей степени зависит от толщины этого слоя, который в свою

Учебное пособие содержит краткие сведения о растительном сырье, культуре клеток лекарственных растений, данные о химическом строении и свойствах действующих веществ фитохимических препаратов, теоретических основах процесса экстрагирования растительного сырья и других технологических процессов в производстве фитопрепаратов. Представлены данные о методах выделения и очистки различных лекарственных веществ из растений (физико-химической технологии), аппаратурном оформлении технологических процессов производства настоек, экстрактов, новогаленовых препаратов и индивидуальных соединений. Приведены примеры комплексной переработки лекарственного сырья. Учебное пособие предназначено для послевузовского профессионального образования провизоров, для студентов фармацевтических вузов, фармацевтических факультетов медицинских вузов, химических и технологических вузов, изучающих химию и технологию фитопрепаратов, а также для специалистов химико-фармацевтических заводов, фирм, фармацевтических фабрик, производственных лабораторий и работников научно-исследовательских технологических лабораторий, занимающихся разработкой технологии фитохимических препаратов.

Характеристика биологически активных веществ.
К биологически активным веществам (БАВ) относят соединения, активно воздействующие на организм человека и используемые в качестве лекарственных веществ. Лекарственные препараты - дозированные ЛС в определённой лекарственной форме. В зависимости от общности ТП, применяемого сырья и (в ряде случаев) действия на организм выделяют 8 групп лекарственных препаратов: химические препараты, химико-фармацевтические препараты, фитохимические препараты, антибиотики, витамины, эндокринные препараты, иммунологические препараты, препараты радиоактивных изотопов.

Химические препараты - индивидуальные химические соединения, вырабатываемые предприятиями химической промышленности для различных отраслей народного хозяйства и используемые в медицинской практике в качестве ЛС (например, натрия бромид, калия бромид, натрия гидрокарбонат, натрия тиосульфат).
Химико-фармацевтические препараты - химические вещества, вырабатываемые предприятиями химико-фармацевтической промышленности, как правило, на основе многостадийного тонкого органического синтеза. Эта группа препаратов включает противотуберкулёзные (фтивазид, изониазид и др.), местноанестезирующие (новокаин, тримекаин и др.).


Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Химия и технология фитопрепаратов, Минина С.A., Каухова И.Е., 2004 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.

Процессы экстракции или извлечения имеют большое значение в современной фармации. Путем извлечения получается основная группа галеновых препаратов - экстракты и настойки, а также новогаленовы препараты, извлечения из свежих растений и другие препараты. В производстве индивидуальных фитопрепаратов (алкалоидов, гликозидов и др.) начальной стадией является также экстракция лекарственного растительного сырья. Экстракционный процесс лежит в основе технологии многих препаратов, получаемых из сырья животного происхождения (препараты гормонов, ферментов).

Сущность процесса извлечения

В процессе извлечения преобладают диффузионные (массообменные) явления, основанные на выравнивании концентраций между растворителем (экстрагентом) и раствором веществ, содержащихся в клетке. Различают диффузию: молекулярную и конвективную.

Молекулярной диффузией называется обусловленный хаотическим движением молекул процесс постепенного взаимного проникновения веществ (жидких или газообразных), граничащих друг с другом и находящихся в макроскопическом покое. Интенсивность диффузии зависит от кинетической энергии молекул. Чем она выше, тем интенсивнее протекает диффузионный процесс. Например, газы легко диффундируют друг в друга, поскольку молекулы их движутся с большими скоростями. Жидкости и растворы, движение молекул в которых более ограничено, диффундируют значительно медленнее.

Движущей силой диффузионного процесса является разность концентраций растворенных веществ в соприкасающихся жидкостях. Чем больше разница концентраций, тем большее количество вещества продиффундирует при равных условиях за одно и то же время.

Молекулярная диффузия подчиняется закону, согласно которому на кинетику процесса наряду с перепадом концентрации веществ оказывают также влияние и другие факторы:

скорость диффузии увеличивается при повышении температуры, поскольку при этом увеличивается подвижность молекул и как следствие возрастает скорость их движения;

скорость диффузии зависит от молекулярной массы вещества и размера частиц: иначе говоря, чем меньше масса и радиус диффундирующих частиц, тем быстрее идет диффузия. Растворы белков, слизей и других подобных веществ диффундируют очень медленно, поскольку они являются высокомолекулярными соединениями. Совершенно другая картина наблюдается в растворах веществ, находящихся в состоянии молекулярной или ионно-молекулярной дисперсии. Эти вещества как имеющие относительно малые массы и размеры частиц диффундируют несравненно быстрее;

скорость диффузии зависит от вязкости среды, так как с увеличением ее уменьшается подвижность молекул;

на диффузионный процесс влияют величина поверхности, разделяющей вещества, а также толщина слоя, через который происходит диффузия. Очевидно, что чем больше поверхность раздела, тем больше продиффундирует вещества, и чем толще слой, тем медленнее идет выравнивание концентрации;

процесс диффузии требует определенного времени. Чем дольше длится диффузия, тем больше веществ переходит из одной среды в другую.

Конвективная диффузия происходит в результате сотрясения, изменения температуры, перемешивания, т. е. вследствие причин, вызывающих перемещение жидкости, а вместе с ней и растворенного вещества в турбулентном (беспорядочном) потоке. Иначе говоря, механизм конвективной диффузии состоит в переносе вещества не в виде молекул вещества, а в виде отдельных небольших объемов его раствора. Конвективная диффузия подчиняется закону, согласно которому скорость диффузии возрастает с увеличением поверхности контакта фаз, разности концентраций и продолжительности процесса.

При конвективной диффузии размер молекул диффундирующего вещества, вязкость растворителя, кинетическая энергия молекул становятся второстепенными факторами. Главными для скорости конвективного переноса вещества становятся гидродинамические условия, т. е. скорость и режим движения жидкости. Скорость конвективного переноса вещества во много раз больше скорости молекулярного переноса.

Разбираемые нами положения относятся к так называемой свободной молекулярной диффузии, т. е. к такому случаю, когда между соприкасающимися растворами или жидкостями нет никаких перегородок. Процесс же извлечения из лекарственного растительного сырья осложнен наличием клеточных стенок, физиологическое состояние которых может быть различным. Большинство галеновых препаратов изготовляют из высушенного растительного сырья, то есть из тканей с умерщвленными клетками, стенки которых приобретают свойства пористой перегородки, допускающей диффузию в обе стороны.

Извлечение следует рассматривать как сложный процесс, состоящий из отдельных моментов: диализа, десорбции, растворения и диффузии, протекающих одновременно как единое целое, как общий процесс. Процесс извлечения начинается с проникновения экстрагента внутрь частиц (кусочков) растительного сырья. По межклеточным ходам экстрагент получает возможность продиффундировать через клеточные стенки (диализ). По мере проникновения экстрагента в клетку ее содержимое начинает набухать и переходить в раствор (десорбция и растворение). Затем ввиду большой разницы между концентрацией раствора в клетке и вне ее начинается перенос растворенных веществ в экстрагент, находящийся вне клеток, наблюдается явление диализа.

Диффузионные процессы внутри клеток (внутренняя диффузия) подчиняются молекулярной диффузии, а извлеченные вещества с поверхности кусочков растительного материала поступают в общую массу экстрагента в основном конвективным путем, который активизируется перемешиванием или другими путями. Необходимо добавить, что вещества, находящиеся в клетке с разорванными стенками, значительно легче извлекаются экстрагентом - происходит простое вымывание. При извлечении веществ из корней, коры и древесины, клетки которых малопроницаемы для экстрагента, процесс вымывания из разрушенных клеток может превалировать над процессом диффузии. Большое значение имеет и химический состав клеточных стенок. Так, если они будут пропитаны церином, кутином или лигнином, то через такие клеточные стенки диализ будет протекать медленно. Пектины при набухании также представляют значительное препятствие для проникновения экстрагента внутрь клеток. В случае получения галеновых препаратов из свежих растений клетки умерщвляют этанолом. Он очень гигроскопичен и при соприкосновении с растительной клеткой обезвоживает ее, вызывая сильнейший плазмолиз. Умерщвление клеток сырья животного происхождения достигается теми же способами: сушкой и обезвоживанием этанолом и ацетоном.

Экстрагенты

К жидкостям, применяемым в качестве экстрагентов, предъявляется ряд общих требований. Экстрагент должен обладать: избирательной (селективной) растворимостью, т. е. способностью извлекать предпочтительно один или группу компонентов из смеси веществ; высокими диффузионными способностями; химической индифферентностью по отношению к извлекаемым веществам; Способностью препятствовать развитию в вытяжке микрофлоры; безвредностью для человеческого организма; летучестью, возможно низкой температурой кипения, после отгонки он не должен оставлять в вытяжке постороннего запаха; легкой регенерируемостью и возможностью повторного использования; быть дешевым и доступным.

Вода как экстрагент обладает широким диапазоном, т. е. она извлекает многие природные вещества (соли алкалоидов, гликозиды, гормоны, сапонины, дубильные вещества, слизи и др.). Что касается сопутствующих, обременяющих вытяжку веществ, то вода их извлекает в количестве, иногда значительно большем, чем следовало бы. Вода хорошо проникает через меточные стенки, если они не пропитаны жироподобными или иными гидрофобными веществами. Вода может быть причиной гидролиза действующих веществ, причем гидролиз усиливается действием ферментов, а также при нагревании. Водные извлечения нестойки, малоконцентрированы. Поэтому без предварительного сгущения они пригодны для употребления лишь на короткое время. Такими извлечениями являются настои и отвары, изготовляемые в аптеках. Наряду с этим вода широко применяется и при производстве густых и сухих экстрактов, приготовляемых с применением вакуум-выпаривания и сушки.

Этанол является хорошим растворителем многих алкалоидов, гликозидов, эфирных масел, смол и других веществ, которые способны растворяться в воде лишь в незначительных количествах. Сопровождающих веществ этанол извлекает тем больше, чем он больше разведен. В крепкий этанол не переходят ни камеди, ни слизи, ни белки. Этанол значительно труднее, чем вода, проникает через стенки клеток. Отнимая воду у белков и слизистых веществ, этанол может превращать их в осадки, закупоривающие поры клеток, и, таким образом, ухудшает диффузию. Чем ниже концентрация этанола, тем он легче проникает внутрь клетки, чем она выше, тем менее возможны гидролитические процессы. Этанол инактивирует ферменты. Несмотря на то, что этанол является лимитированным продуктом, отпускаемым фармацевтическим производствам в установленном порядке, он, обладая высокими извлекающими свойствами, широко применяется как экстрагент.

Эфир (этиловый) вследствие своих избирательных свойств находит применение при производстве некоторых экстрактов с последующим его полным удалением из препарата. Очень огнеопасен.

Глицерин по причине высокой вязкости как самостоятельный экстрагент не используется. Входит в состав извлекающих смесей при производстве некоторых настоек и экстрактов.

Жирные масла (подсолнечное, персиковое и др.) обладают избирательной способностью к экстрагированию. Область использования пока ограниченная.

Бензин используется в качестве вспомогательного экстрагента (чаще для обезжиривания сырья) перед основным процессом экстрагирования. Очень огнеопасен, особенно «легкий» бензин типа петролейного эфира. В качестве специальных или подсобных экстрагентов применяются хлороформ, дихлорэтан, ацетон и некоторые другие растворители.

Таким образом, ни один из применяемых в фармацевтическом производстве экстрагентов не удовлетворяет всем требованиям одновременно, поэтому в каждом случае экстрагент подбирают, считаясь также с выходом продукта, экономической целесообразностью и безопасностью. При необходимости используют сочетание экстрагентов, например при извлечении сердечных гликозидов применяют смесь из 95 объемов хлороформа и 5 объемов этанола 95%.

Управление экстракционным процессом

Для достижения наиболее полного и быстрого извлечения действующих веществ из лекарственного растительного сырья, помимо подбора экстрагента, должны быть созданы оптимальные условия для диффузионного процесса. Из факторов, влияющих на полноту и скорость извлечения, которые поддаются регулированию, и, следовательно, могут быть изменены в желательную сторону, основными являются степень измельчения, разность концентраций, температура, вязкость экстрагента, продолжительность извлечения и гидродинамические условия.

Степень измельчения сырья. Для обеспечения диффузионного процесса сырье должно быть измельчено. Согласно закону диффузии, количество извлекаемого вещества при всех прочих равных условиях будет тем больше, чем будет больше поверхность контакта между частицами сырья и экстрагентом. Следуя этому закону, необходимо было бы добиваться как можно более тонкого измельчения, однако практика показала, что буквальное выполнение условия закона диффузии в некоторых случаях приводит к противоположному результату - ухудшению процесса извлечения. При чрезмерно тонком измельчении сырье может слеживаться, а при содержании слизистых веществ ослизняться, в результате чего через такие массы экстрагент будет проходить чрезвычайно плохо. При слишком тонком измельчении резко увеличивается количество поврежденных клеток, что влечет за собой вымывание сопутствующих веществ и переход большого количества взвешенных частиц в извлечение. В результате вытяжки получаются мутные, трудно осветляемые и плохо фильтруемые.

Из сказанного следует, что степень измельчения устанавливается с учетом морфолого-анатомических особенностей перерабатываемого сырья и химической природы содержащихся в нем веществ, что находит отражение в соответствующих фармакопейных статьях и производственных регламентах.

Разность концентраций и гидродинамические условия. Разность концентраций является движущей силой диффузионного процесса, поэтому необходимо во время экстракции постоянно стремиться к максимальному перепаду концентраций. Достаточно высокую разность концентраций на границе раздела твердой (сырье) и жидкой (экстрагент) фаз можно поддерживать уже при малой скорости перемещения жидкости. При этом вещества, диффундирующие с поверхности кусочков растительного материала конвективными токами жидкости будут уноситься со скоростью, во много раз превышающей скорость молекулярной диффузии, и равномерно распределяться во всем объеме жидкости. При этом область вокруг частицы все время будет обновляться свежим экстрагентом, и таким образом движущая сила, т. е. разность концентраций, будет поддерживаться на должном уровне.

Простейшим приемом интенсификации процесса извлечения является перемешивание настаиваемой массы. Более совершенный способ - смена экстрагента. Ее можно производить периодически или непрерывно. Под периодической сменой экстрагента понимается слив вытяжки с сырья и залив его порцией свежего экстрагента. Под непрерывной сменой извлекателя понимается непрерывное истечение вытяжки из экстракционного сосуда и непрерывное поступление в сосуд свежего экстрагента. Перемешивание и периодическая смена экстрагента типичны для мацерационных методов получения извлечений. Непрерывная смена экстрагента находит применение при получении извлечений методами перколяции, быстро текущей реперколяции и другими интенсивными методами.

Температура экстрагента. Повышение температуры ускоряет процесс извлечения. Этот фактор оказывает сильное влияние, но в условиях производства галеновых препаратов им можно воспользоваться только для получения водных извлечений. Спиртовые и тем более эфирные извлечения проводятся при комнатной (и более низкой) температуре, поскольку с ее повышением увеличиваются потери экстрагентов, а следовательно, вредность и опасность работы с ними.

Использование температурного фактора при экстрагировании лекарственных веществ должно проводиться со строгим учетом их термолабильности. Повышение температуры экстрагента не показано и для эфирно-масличного сырья, поскольку эфирные масла при этом в значительной степени теряются. Необходимо принимать также во внимание, что при применении горячей воды происходит клейстеризация крахмала; вытяжки в этом случае становятся слизистыми и дальнейшая работа с ними значительно усложняется. Повышение температуры при извлечении желательно в тех случаях, когда экстрагируемым сырьем являются корни и корневища, кора и кожистые листья. Горячая вода в этом случае способствует лучшему сепарированию тканей и разрыву клеточных стенок, облегчает тем самым течение диффузионного процесса. Горячая вода часто необходима и для инактивации ферментов.

Вязкость экстрагента. Уже указывалось, что менее вязкие жидкости обладают большей диффузионной способностью. Среди экстрагентов наиболее вязким является глицерин, но он один, как уже упоминалось, не применяется. Чаще используются растительные масла. С целью активизации диффузионного процесса они применяются в подогретом виде - молекулы растворенных веществ (например, основания алкалоидов) в этом случае несравненно легче перемещаются между молекулами масла. У основных экстрагентов - воды и этанола с повышением температуры вязкость также несколько понижается, что принимается во внимание на производстве.

Продолжительность процесса экстракции. Из законов диффузии следует, что количество извлеченных веществ пропорционально времени. Однако на производстве стремятся к тому, чтобы полнота извлечения была достигнута в кратчайшее время, в максимальной степени, используя при этом все факторы, ведущие к интенсификации процесса извлечения. Таким образом, полнота и скорость извлечения действующих веществ являются равнодействующими многих факторов, влиянием которых нужно умело управлять.

На заводах фармацевтической промышленности из лекарственных трав изготавливаются лечебные препараты. В аптеках по рецептам врачей или без рецептов (в зависимости от химического состава растений) продаются сухие лекарственные растения. Из купленного в аптеке или заготовленного самостоятельно сырья в домашних условиях можно приготовить водные настои, отвары, экстракты, спиртовые настойки, чаи и сборы, соки, порошки и мази.

Настой - это жидкая лекарственная форма, которая получается путем настаивания измельченного лекарственного сырья. При настаивании в жидкую среду (воду или спирт) из растения выделяются различные действующие вещества, которые оказывают влияние на организм человека. Для приготовления настоев необходимо использовать только мягкие и более нежные части растения - цветки, листья, стебли. Настои можно готовить двумя способами - горячим и холодным.

При изготовлении горячим способом взвешенное или отмеренное по объему растительное сырье помещают в эмалированную, фарфоровую или стеклянную (из тугоплавкого стекла) посуду и заливают кипятком (обычно в соотношении 1:10, т. е. на одну часть сырья берут 10 частей воды). Посуду с заваренной травой накрывают крышкой и на 15-20 мин ставят на водяную баню или в горячую печь, следя за тем, чтобы лекарственная смесь не кипела. Затем настой необходимо охладить при комнатной температуре, процедить через 2-4 слоя марли или через полотняную (лучше льняную) ткань. После этого настой готов к употреблению.

Если настой готовится холодным способом, взвешенное и измельченное растительное сырье помещают в эмалированную или стеклянную посуду, заливают необходимым количеством остуженной кипяченой воды, потом накрывают крышкой и настаивают от 4 до 12 ч (в зависимости от химического состава и объемов сырья). После настой фильтруют через марлю и применяют по назначению.

Отвар - лекарственная форма, которая имеет много общего с настоем. Однако отвары приготавливаются из более плотных и твердых частей растений - корней, корневищ, коры. Отмеренное или взвешенное измельченное сырье помещают в эмалированный сосуд и заливают холодной водой (обычно в соотношении 1:10 и 1:20 для внутреннего применения и 1:5 - для наружного). Затем сосуд накрывают крышкой и ставят на легкий огонь или на кипящую водяную баню. Содержимое сосуда доводят до кипения и кипятят в течение 20-30 мин. Остуженный отвар фильтруют через марлю и используют по назначению.

Отвары, для приготовления которых используется дубильное сырье (корневища бадана и кровохлебки, кора лиственницы или дуба, листья толокнянки), необходимо фильтровать сразу после снятия с огня или водяной бани, не остужая их.

Настои и отвары лучше готовить ежедневно, т. к. они быстро портятся, особенно летом. Если сырье нужно экономить или нет возможности готовить свежую порцию ежедневно, отвар следует хранить в темном и прохладном месте (например, в холодильнике или погребе) не более 3 суток.

Экстракт - это полужидкая (густая) лекарственная форма, получаемая в домашних условиях путем выпаривания в закрытой посуде отваров или настоев (чаще всего до половины первоначально взятого объема). Обычно экстракты хранятся в холодильнике или погребе более длительное время, чем настои и отвары.

Настойка - жидкая лекарственная форма, пригодная для длительного хранения. Обычно настойки готовят на 40-70 %-ном спирте. Измельченное сырье заливают разведенным спиртом или водкой в соотношении 1:5, 1:10 или 1:20. Посуду закрывают плотной крышкой или пробкой и в течение 7 суток выдерживают в темном месте при комнатной температуре. Затем настойку фильтруют через марлю, переливают в темную бутылку и используют по назначению (обычно по 10-30 капель на прием). Спиртовые настойки могут храниться в течение нескольких месяцев и даже лет.

Чаи и сборы - это сухие смеси нескольких видов лекарственных растений, взятых в заданных пропорциях. В домашних условиях их приготавливают, используя весы или обычную меру (ложку, стакан). Измельченные компоненты тщательно перемешивают и хранят в плотной упаковке (стеклянном сосуде, картонной коробке или жестяной банке). Чаи и сборы используются для приготовления настоев, отваров, настоек, компрессов, ванн и т. д.

Сок - жидкая лекарственная форма, которая приготавливается из свежего сырья (ягод, плодов, зеленых частей растений, клубней, корнеплодов и т. д.) без его кипячения. Отобранные растения или их части хорошо промывают водой, измельчают и помещают в соковыжималку или пропускают через мясорубку. Отжатый сок хранят в стеклянной или эмалированной посуде в холодном месте и используют по назначению.

Порошок - лекарственная форма, приготовляемая из высушенного сырья путем измельчения в ступке. Порошки хранят в сухой таре (коробках, стеклянных банках с плотными крышками) и используют по необходимости.

Мазь - это лекарственная форма для наружного применения. Мази готовятся из измельченного лекарственного сырья, растертого на жирной основе - несоленом сливочном масле, вазелине, сале, растительном масле и т. д. Хранить их следует в темном прохладном месте.





error: Контент защищен !!