Неорганические компоненты крови и их функции. Функции крови. Когда сдавать кровь: подготовка к анализу

Человеческий организм устроен крайне сложно. Элементарной строительной частицей его является клетка. Объединение клеток, схожих по своему строению и выполняемым функциям, образует определенный вид ткани. Всего в человеческом организме выделяют четыре вида тканей: эпителиальная, нервная, мышечная и соединительная. Именно к последнему виду и относится кровь. Ниже в статье будет рассмотрено, из чего состоит .

Общие понятия

Кровь является жидкой соединительной тканью, которая постоянно циркулирует от сердца во все отдаленные отделы человеческого организма и реализует жизненно значимые функции.

У всех позвоночных организмов она имеет красный цвет (разной степени интенсивности окраски), приобретаемый вследствие наличия гемоглобина, специфического белка, ответственного за перенос кислорода. Роль крови в организме человека невозможно преуменьшить, поскольку именно она отвечает за перенос в нем питательных веществ, микроэлементов и газов, нужных для физиологического протекания процессов клеточного обмена.

Основные составляющие

В строении крови человека присутствуют два главных компонента – плазма и размещенные в ней форменные элементы нескольких видов.

Вследствие центрифугирования можно увидеть, что – это прозрачный жидкий компонент желтоватого цвета. Ее объем достигает 52 – 60% всего кровяного объема. Состав плазмы в крови представлен на 90% водой, где растворены белки, неорганические соли, питательные вещества, гормоны, витамины, ферменты и газы. И так из чего состоит кровь у человека.

Клетки крови бывают следующих видов:

  • (красные кровяные тельца) – содержится больше всего среди всех клеток, их значение состоит в транспорте кислорода. Красный цвет объясняется наличием в них гемоглобина.
  • (белые клетки крови) – часть иммунной системы человека, осуществляют его защиту от патогенных факторов.
  • (кровяные пластинки) – гарантируют физиологическое протекание свертываемости крови.

Тромбоциты являются бесцветными пластинками, лишенными ядра. Фактически – это фрагменты цитоплазмы мегакариоцитов (клеток-гигантов в костном мозге), которые окружены клеточной мембраной. Форма тромбоцитов разнообразна – овальная, в виде сферы либо палочек. Функция тромбоцитов заключается в обеспечении свертываемости крови, то есть защиты организма от .


Кровь - это быстро регенерирующая ткань. Обновление форменных элементов крови проходит в органах кроветворения, главный из которых - расположенный в тазовых и длинных трубчатых костях костного мозга.

Какие задачи выполняет кровь

Выделяют шесть функций крови в организме человека:

  • Питательная – кровь доставляет от пищеварительных органов ко всем клеткам тела питательные вещества.
  • Выделительная – кровь забирает и уносит от клеток и тканей к органам выделения продукты распада и окисления.
  • Дыхательная – транспорт кислорода и углекислого газа.
  • Защитная – обезвреживание патогенных организмов и ядовитых продуктов.
  • Регуляторная – обусловлена переносом гормонов, которые регулируют обменные процессы и работу внутренних органов.
  • Поддержание гомеостазиса (постоянства внутренней среды организма) – температура, реакция среды, солевой состав и т.п.

Значение крови в организме огромно. Постоянство ее состава и характеристик обеспечивает нормальное протекание процессов жизнедеятельности. По изменению ее показателей можно выявить развитие патологического процесса на ранних этапах. Надеемся вы узнали, что такое кровь, из чего она состоит и как она функционирует в организме человека.

Кровь - это та среда в организме человека, посредством которой доставляются кислород и питательные вещества в ткани, выводятся токсины и вредители, осуществляется связь между органами и системами путем передачи гормонов, организуется защита от инфекционных агентов.

Все, из чего состоит кровь, достаточно хорошо изучено и измерено. Поэтому любые изменения состава служат очень информативным диагностическим признаком болезни, помогают отличить одно заболевание от другого, принять меры профилактики и лечения.

Существуют физиологические и возрастные изменения человека. Они тоже отражаются на составе крови.

Главные составные части

Как любой концентрированный раствор, кровь можно разделить на жидкую часть (плазму) и форменные элементы, к которым относятся эритроциты, тромбоциты и лейкоциты. В норме поддерживается соотношение между ними 4:6 (40-45% приходится на элементы).

Этот показатель медики называют «гематокритом». Изменения говорят о повышенной густоте крови (больше 45%) из-за потери жидкости с потом, поносом, при массивных ожогах. Возможен обратный вариант: разжижение крови при нарушенном синтезе и недостатке форменных элементов, введении большого объема жидкости.

Что находится в плазме

В плазму входит вода и различные вещества органического и неорганического происхождения. На воду приходится 90-92%. В «сухом» остатке содержатся белки, жиры, углеводистые соединения, микроэлементы.

Белковый состав

Белковые молекулы необходимы для обеспечения:

  • поддержки достаточной концентрации крови, позволяющей происходить различным биохимическим превращениям в организме человека;
  • кислотной части равновесия в обмене веществ;
  • выработки защитных механизмов;
  • транспорта кислорода и других веществ;
  • питания клеток;
  • процесса свертываемости крови;
  • «строительной» работы в клетках.

Основные белки крови:

Альбумины - 60% от общего белка, синтезируются в печени:

  • они основной строительный и запасный материал для синтеза аминокислот;
  • образуют и поддерживают внутреннее осмотическое давление, не позволяющее жидкой части покидать кровяное русло;
  • являются переносчиками холестерина, билирубина, жирных кислот и их солей, некоторых металлов, антибиотиков и сульфаниламидов.

Автоматический анализатор содержания белка в крови позволяет быстро выполнить анализ

Глобулины - 30-34%, образуются в печени, лимфоузлах, селезенке, костном мозге. Имеют три фракции:

  • Альфа-глобулины представляют соединения белка с углеводами, в таком виде находится 60% всей глюкозы (гликопротеины), переносят витамины, гормоны (эритропоэтин, протромбин, плазминоген), микроэлементы, молекулы жира.
  • Бета-глобулины организуют транспортировку фосфолипидов, холестерина, железа (трансферрин), половых гормонов, факторов свертываемости крови.
  • Гамма-глобулины образуют защитные антитела, агглютинины крови, по которым определяют ее группу.

Фибриноген - до 6%, образуется в печеночных клетках, играет основную роль в процессе свертываемости крови.

Белковые вещества плазмы и липопротеиды всегда учитываются при назначении лекарственных препаратов, поскольку они могут связывать некоторые вещества и блокировать их действие. Особенно важно это свойство при рассмотрении совместимости одновременного лечения двумя и более лекарствами.

Кроме белка в чистом виде, в крови присутствуют азотистые соединения в виде аминокислот, полипептидных цепочек, мочевой кислоты, креатинина, всего от 11 до 15 ммоль/л. Рост этого показателя указывает на нарушенную выделительную функцию почек.

Прочие органические и неорганические вещества

К органическим веществам плазмы, не содержащим азота, относятся липиды, ферменты, глюкоза. Они необходимы для снабжения организма энергией, для участия в свертываемости.

Неорганические составляющие входят в 1% объема. Это положительно и отрицательно заряженные частицы металлов и солей. Они являются частью ферментов, витаминов, участвуют во всех видах обмена веществ, обеспечивают передачу нервного импульса.

Что относится к форменным элементам

(эритроциты, лейкоциты и тромбоциты) - главная составляющая гематокрита.

Эритроциты

Эритроциты - клетки, не имеющие ядра. Оно заменено гемоглобином, особым веществом, наделенным способностью с помощью железа связывать кислородные молекулы и удерживать углекислый газ. Эритроциты осуществляют функцию переноса кислорода в ткани и вывода углекислоты. Благодаря им, происходит тканевое дыхание. Кроме того, они участвуют в доставке аминокислот, поддержании кислотно-щелочного равновесия.

Особенность в строении гемоглобина плода позволяет обеспечить насыщение кислородом тканей в плацентарном круге кровообращения у беременной женщины.

Биохимические свойства эритроцитов используются в лабораторной диагностике. Они влияют на скорость оседания эритроцитов (СОЭ). По величине показателя судят о степени воспалительного процесса, малокровии.

Лейкоциты

Клетки лейкоцитарного ряда отвечают за иммунитет организма. Они не просто убивают или задерживают инфекционные агенты, но обеспечивают иммунную память и передачу информации следующим поколениям. Различают зернистые лейкоциты (гранулоциты) и незернистые (агранулоциты). Далее они подразделяются на подвиды:

  • для гранулоцитов - базофилы, эозинофилы, нейтрофилы (по отношению к красителям);
  • для агранулоцитов - лимфоциты и моноциты.

Каждому виду клеток определена своя роль в защитной реакции. Стандартное соотношение между лейкоцитами разных видов называется лейкоцитарной формулой и имеет значение в диагностике.


Вид форменных элементов под микроскопом

По характеру лейкоцитарной реакции можно судить о вирусной или бактериальной инфекции, определить этапы болезни, качество ответа организма на применяемое лечение, диагностировать опухолевые процессы, лейкозы и лейкопении.

Значение имеет выявление увеличения форм-предшественников. Это указывает на нарушенный процесс синтеза лейкоцитов, приводит к раку крови.

Тромбоциты

Тромбоциты - самые мелкие, безъядерные клетки, но не менее важные. Их главная задача - сохранить целостность кровяного русла, не допустить кровопотери. Эти клетки способны склеиваться, прилипать к разной поверхности. Таким образом они выстраивают тромбы при порезах и ранениях.

Что влияет на состав крови

Всего в организме человека находится около шести литров крови. Обычно рассчитывают по доле от веса: у взрослых - 6-7%, у детей - до 9%.

Соотношение перечисленных составляющих крови может изменяться не только при патологических изменениях, но и в зависимости от других причин.

Факторы, влияющие на состав крови, зависят от:

  • правильности питания, достаточного количества белковых веществ, витаминов и минералов в продуктах;
  • величины физической нагрузки;
  • от пола и возраста;
  • климатических условий проживания;
  • вредных привычек.

Жирная пища повышает уровень холестерина, липопротеинов. Чрезмерное увлечение мясными продуктами влияет на количество солей мочевой кислоты. В крови у кофеманов находят гипергликемию, лейкоцитоз и рост эритроцитов. Отсутствие в питании необходимых фруктов приводит к резкому снижению гемоглобина и железа. Голодание резко повышает билирубин, снижает азотистые вещества.

Для мужчин организмом определена большая физическая нагрузка, поэтому у них выше, чем у женщин, уровень эритроцитов, гемоглобина.

В пожилом возрасте все системы начинают переходить к «режиму экономии», поэтому показатели снижаются.


Большое значение в питании придается фруктовому набору

У людей, проживающих в условиях высокогорья, значительно повышено количество эритроцитов и гемоглобин. Это физиологическая реакция на недостаток кислорода в атмосфере.

Для курильщиков характерны нарушения в белковом составе, лейкоцитоз. Так организм пытается справиться с постоянным поступлением ядовитых веществ.

Улучшить показатели своего анализа крови можно даже на фоне заболевания. Для этого необходимо использовать достаточное количество природных питательных веществ и витаминов в диете. Прекратить курение, увлечение алкогольными напитками.

Помочь восстановить нарушенный синтез необходимых веществ можно с помощью очищения печени растительными отварами вместо кофе. Посильная физическая нагрузка позволяет поддерживать метаболизм на должном уровне в любом возрасте.

Кровь, ее значение, состав и общие свойства.

Кровь вместе с лимфой и межтканевой жидкостью составляет внутрен­нюю среду организма, в которой протекает жизнедеятельность всех клеток и тканей.

Особенности:

1) является жидкой средой, содержащей форменные элементы;

2) находится в постоянном движении;

3) составные части в основном образуются и разрушаются вне ее.

Кровь вместе с кроветворными и кроверазрушающими органами (кост­ным мозгом, селезенкой, печенью и лимфатическими узлами) составляет це­лостную систему крови. Деятельность этой системы регулируется нейрогу­моральным и рефлекторным путем.

Благодаря циркуляции в сосудах кровь выполняет в организме следую­щие важнейшие функции:

14. Транспортная – кровь транспортирует питательные вещества (глюкозу, аминокислоты, жиры и др.) к клеткам, а конечные продукты обмена веществ (аммиак, мочевину, мочевую кислоту и др.) - от них к органам выделения.

15. Регуляторная – осуществляет перенос гормонов и других физио­логических активных веществ, воздействующих на различные органы и ткани; регуляция постоянства температуры тела – перенос тепла от ор­ганов с интенсивным его образованием к органам с менее интенсивной теплопродукцией и к местам охлаждения (кожа).

16. Защитная – благодаря способности лейкоцитов к фагоцитозу и наличию в крови иммунных тел, обезвреживающих микроорганизмы и их яды, разрушающих чужеродные белки.

17. Дыхательная – доставка кислорода от легких к тканям, углекис­лого газа – из тканей к легким.

У взрослого человека общее количество крови составляет 5- 8% веса тела, что соответствует 5-6 л. Объем крови принято обозначать по отноше­нию к весу тела (мл/кг). В среднем он равен у мужчин 61,5 мл/кг, у женщин - 58,9 мл/кг.

В кровеносных сосудах в состоянии покоя циркулирует не вся кровь. Около 40-50% ее находится в кровяных депо (селезенке, печени, сосудах кожи и легких). Печень – до 20 %, селезенка – до 16%, подкожная сосуди­стая сеть – до 10 %

Состав крови. Кровь состоит из форменных элементов (55-58%) - эритроцитов, лейкоцитов и тромбоцитов - и жидкой части - плазмы (42-- 45%).

Эритроциты – специализированные безъядерные клетки диаметром 7-8 мк. Образуются в красном костном мозге, разрушаются в печени- и селе­зенке. В 1 мм3 крови – 4–5 млн. эритроцитов Строение и состав эритроцитов обусловлены выполняемой ими функцией - транспорт газов. Форма эритро­цитов в виде двояковогнутого диска увеличивает соприкосновение с окружающей средой, способствуя этим ускорению процессов газообмена.

Гемоглобин обладает свойством легко связывать и отщеплять кисло­род. Присоединяя его, он становится оксигемоглобином. Отдавая кислород в местах с малым его содержанием, он превращается в восста­новленный (редуцированный) гемоглобин.

В скелетной и сердечной мышцах содержится мышечный гемоглобин - миоглобин (важная роль в снабжении кислородом работающих мышц).

Лейкоциты , или белые кровяные тельца, по морфологическим и функ­циональным признакам представляют собой обычные клетки, содержащие ядро и протоплазму специфической структуры. Они образуются в лимфати­ческих узлах, селезенке и костном мозге. В 1 мм 3 крови человека находится 5-6 тыс. лейкоцитов.

Лейкоциты неоднородны по своему строению: в одних из них прото­плазма имеет зернистое строение (гранулоциты), в других нет зернистости (агронулоциты). Гранулоциты составляют 70-75% всех лейкоцитов и делят­ся в зависимости от способности окрашиваться нейтральными, кислыми или основными красками на нейтрофилы (60-70%), эозинофилы, (2-4%) и ба­зофилы (0,5- 1 %). Агранулоциты – лимфоциты (25-30%) и моноциты (4-8%).

Функции лейкоцитов:

1) защитная (фагоцитоз, продукция антител и разрушение токсинов белкового происхождения);

2) участие в расщеплении пищевых веществ

Тромбоциты - плазматические образования овальной или круглой формы диаметром 2-5 мк. В крови человека и млекопитающих они не име­ют ядра. Тромбоциты образуются в красном костном мозге и в селезенке, и их количество колеблется от 200 тыс. до-б00 тыс. в 1 мм3 крови. Они играют важную роль в процессе свертывания крови.

Основная функция лейкоцитов – иммунногенез (способность синтези­ровать антитела или иммунные тела, которые обезвреживают микробы и про­дукты их жизнедеятельности). Лейкоциты, обладая способностью к амебо­видным движениям, адсорбируют циркулирующие в крови антитела и, про­никая через стенки сосудов, доставляют их в ткани к очагам воспаления. Нейтрофилы, содержащие большое количество ферментов, обладают способ­ностью к захватыванию.и перевариванию болезнетворных микробов (фаго­цитоз – от греч. Phagos - пожирающий). Перевариваются и клетки организ­ма, дегенерирующие в очагах воспаления.

Лейкоциты участвуют также в восстановительных процессах после вос­паления тканей.

Защита организма от кровотечений. Эта функция осуществляется благодаря способности крови к свертыванию. Сущность свертывания крови заключается в переходе растворенного в плазме белка фибриногена в не­растворенный белок - фибрин, который образует нити, склеенные с краями раны. Сгусток крови. (тромб) преграждает дальнейшее кровотечение, предохраняя организм от кровопотерь.

Превращение фиброногена в фибрин осуществляется при воздействии фермента тромбина, который образуется из белка протромбина под влияние тромбопластина, появляющегося в крови при разрушении тромбоцитов. Об­разование тромбопластина и превращение протромбина в тромбин проте­кают при участии ионов кальция.

Группы крови. Учение о группах крови возникло в связи с проблемой переливания крови. В 1901 г. К. Ландштейнер обнаружил в эритроцитах людей агглютиногены А и В. В плазме крови находятся агглютинины a и b (гамма-глобулины). Согласно классификации К.Ландштейнера и Я.Янского в зависимости от наличия или отсутствия в крови конкретного человека агглютиногенов и агглютининов различают 4 группы крови. Эта система получила название АВО. Группы крови в ней обозначаются цифрами и теми агглютиногенами, которые содержатся в эритроцитах данной группы.

Групповые антигены – это наследственные врожденные свойства кро­ви, не меняющиеся в течение всей жизни человека. Агглютининов в плазме крови новорожденных нет. Они образуются в течение первого года жизни ре­бенка под влиянием веществ, поступающих с пищей, а также вырабатывае­мых кишечной микрофлорой, к тем антигенам, которых нет в его собствен­ных эритроцитах.

I группа (О) – в эритроцитах агглютиногенов нет, в плазме содержатся агглютинины a и b



II группа (А) – в эритроцитах содержится агглютиноген А, в плазме – агглютинин b ;

III группа (В) – в эритроцитах находится агглютиноген В, в плазме – аг­глютинин a ;

IV группа (АВ) – в эритроцитах обнаруживаются агглютиногены А и В, в плазме агглютининов нет.

У жителей Центральной Европы I группа крови встречается в 33,5%, II группа – 37,5%, III группа – 21%, IV группа – 8%. У 90% коренных жителей Америки встречается I группа крови. Более 20% населения Центральной Азии имеют III группу крови.

Агглютинация происходит в том случае, если в крови человека встре­чаются агглютиноген с одноименным агглютинином: агглютиноген А с аг­глютинином а или агглютиноген В с агглютинином b. При переливании не­совместимой крови в результате агглютинации и последующего их гемолиза развивается гемотрансфузионный шок, который может привести к смерти. Поэтому было разработано правило переливания небольших количеств крови (200 мл), по которому учитывали наличие агглютиногенов в эритроцитах до­нора и агглютининов в плазме реципиента. Плазму донора во внимание не принимали, так как она сильно разбавлялась плазмой реципиента.

Согласно данному правилу кровь I группы можно переливать людям со всеми группами крови (I, II, III, IV), поэтому людей с первой группой крови называют универсальными донорами. Кровь II группы можно переливать лю­дям со II и IY группами крови, кровь III группы – с III и IV, Кровь IV группы можно переливать только людям с этой же группой крови. В то же время лю­дям с IV группой крови можно переливать любую кровь, поэтому их называ­ют универсальными реципиентами. При необходимости переливания больших количеств крови этим правилом пользоваться нельзя.

Говорить о крови немыслимо без учета её основных составляющих, которые обусловливают уникальные свойства этой жидкой ткани организма.

Компоненты крови

Как правило, кровь составляет 7-8% массы тела человека; у взрослых это 4,5-6 литров. Кровь – это жидкость, которая выполняет : транспортировку кислорода и питательных веществ к нашим клеткам, избавляет от углекислого газа, аммиака и других отходов (смотрите ). Кроме того, она играет важную роль в нашей иммунной системе, поддерживает относительно постоянную температуру тела. Кровь является высокоспециализированной тканью, она состоит из более чем 4000 различных видов компонентов . Наиболее важные из них четыре основные компонента крови: , , и . Все эти компоненты содержатся в крови людей не зависимо от их расовых, этнических и религиозных отличий.

Эритроциты

Красные клетки крови или эритроциты , являются относительно большими клетками без ядер. Эритроциты обычно составляют 40-50% от общего объема крови. Они переносят кислород из легких к каждой клетке тканей тела и уносят углекислый газ. Эритроциты образуются непрерывно в костном мозге из стволовых клеток в количестве около 2-3 миллионов клеток в секунду . 95% эритроцита занято гемоглобином - газотранспортной молекулой белка. Каждый эритроцит содержит около 270 миллионов богатых железом молекул гемоглобина. Люди, которые страдают анемией, обычно имеют недостаток эритроцитов, а потому чувствуют усталость из-за нехватки кислорода. Красный цвет крови в первую очередь определяется кислородом в эритроцитах. Молекула гемоглобина плода человека (фетальный гемоглобин) отличаются от молекулы гемоглобина взрослых количеством аминокислотных цепей. Фетальный гемоглобин имеет три цепи, в то время как у взрослых только две. Как следствие, молекула фетального гемоглобина связывает и транспортирует относительно больше кислорода к клеткам организма.

Белые клетки, лейкоциты

Тромбоциты

Тромбоциты, или пластинки , являются безъядерными фрагментами клеток, которые работают в системе свертывания крови, на месте повреждения сосудов. Они прилипают к месту повреждения и «латают» место разрыва сосуда. Тромбоциты секретируют практически все белки, необходимые для образования сгустка крови. Тринадцать различных факторов свертывания крови, в дополнение к тромбоцитам, необходимы для того, что кровь свернулась, образовался тромб. Запускается система свертывания по принципу каскада - один фактор запускает другой и т.д.

Тромбоциты не одинаково эффективны в свертываемости крови в течение всего дня. Циркадный ритм системы организма (внутренние биологические часы) вызывает пик активации тромбоцитов утром. Это одна из главных причин, что инфаркты и инсульты более распространены в первой половине дня.

Недавние исследования показали, что тромбоциты также помогают бороться с инфекциями, выпуская белки, которые убивают вторгшиеся бактерии и некоторые другие микроорганизмы. Кроме того, тромбоциты стимулируют иммунную систему. Размер отдельных тромбоцитов составляет приблизительно 1/3 размера эритроцита. Срок службы тромбоцитов 9-10 дней. Как эритроциты и лейкоциты крови, тромбоциты образуются в костном мозге из общего предшественника – стволовой клетки.

Плазма

Желтоватого цвета биологическая жидкость, в которой растворены сахара, жиры, белки и соли и взвешены эритроциты, лейкоциты и тромбоциты. Как правило, 55% объема нашей крови приходится на плазму. Так как сердце качает кровь к клеткам по всему телу, плазма несет питание клеткам и удаляет отходы метаболизма. Плазма содержит факторы свертывания крови, сахара, липиды, витамины, минералы, гормоны, ферменты, антитела и другие белки. Вполне вероятно, что плазма содержит некоторое количество каждого из белков, которые синтезируются организмом - до сих пор в плазме крови человека выявлены около 500 белков .

Функции крови

1. Транспортная

  • Растворенные газы (например, кислород, двуокись углерода)
  • Отходы обмена веществ (например, вода, мочевина)
  • Гормоны
  • Ферменты
  • Питательные вещества (такие как глюкоза, аминокислоты, микроэлементы (витамины и минералы), жирные кислоты, глицерин)
  • Белки плазмы
  • Клетки крови (включая белые клетки крови - лейкоциты, эритроциты - красные клетки крови, и тромбоциты).

2. Поддерживает температуру тела

3. Обеспечивает физиологический диапазон рН:

рН крови должен находиться в диапазоне от 6,8 до 7,4, в противном случае она начинает повреждать клетки.

4. Удаляет токсины из организма

Токсины удаляются из крови через почки и пот

5. Регулирование жидкости и электролитов

Избыток соли удаляется из организма с мочой - до 10 г/сутки

Основные компонента крови и её функции - видео

Кровь и лимфу принято называть внутренней средой организма, так как они окружают все клетки и ткани, обеспечивая их жизнедеятельность.В отношении своего происхождения кровь, как и другие жидкости организма, может рассматриваться как морская вода, окружавшая простейшие организмы, замкнутая внутрь и претерпевшая в дальнейшем определенные изменения и усложнения.

Кровь состоит из плазмы и находящихся в ней во взвешенном состоянии форменных элементов (клеток крови). У человека форменные элементы составляют 42,5+-5% для женщин и 47,5+-7% для мужчин. Эта величина называется гематокритный показатель . Циркулирующая в сосудах кровь, органы, в которых происходит образование и разрушение ее клеток, также системы их регуляции объединяются понятием "система крови ".

Все форменные элементы крови являются продуктами жизнедеятельности не самой крови, а кроветворных тканей (органов) - красного костного мозг, лимфатических узлов, селезенки. Кинетика составных частей крови включает следующие этапы: образование, размножение, дифференциация, созревание, циркуляция, старение, разрушение. Таким образом, существует неразрывная связь форменных элементов крови с вырабатывающими и разрушающими их органами, а клеточный состав периферической крови отражает в первую очередь состояние органов кроветворения и кроверазрушения.

Кровь, как ткань внутренней среды, обладает следующими особенности: составные ее части образуются вне ее, межуточное вещество ткани является жидким, основная масса крови находится в постоянном движении, осуществляя гуморальные связи в организме.

При общей тенденции к сохранению постоянства своего морфологического и химического состава, кровь является в то же время одним из наиболее чувствительных индикаторов изменений, происходящих в организме под влиянием как различных физиологических состояний, так и патологических процессов. "Кровь - зеркало организма!"

Основные физиологические функции крови .

Значение крови как важнейшей части внутренней среды организма многообразно. Можно выделить следующие основные группы функций крови:

1.Транспортные функции . Эти функции состоят в переносе необходимых для жизнедеятельности веществ (газов, питательных веществ, метаболитов, гормонов, ферментов и т.п.) Транспортируемые вещества могут оставаться в крови неизмененными, или вступать в те или иные, большей частью, нестойкие, соединения с белками, гемоглобином, другими компонентами и транспортироваться в таком состоянии. В число транспортных входят такие функции, как:

а) дыхательная , заключающаяся в транспорте кислорода из легких к тканям и углекислоты от тканей к легким;

б) питательная , заключающаяся в переносе питательных веществ от органов пищеварения к тканям, а также в переносе их из депо и в депо в зависимости от потребности в данный момент;

в) выделительная (экскреторная ), которая заключается в переносе ненужных продуктов обмена веществ (метаболитов), а также излишних солей, кислых радикалов и воды к местам их выделения из организма;

г) регуляторная , связанная с тем, что кровь является средой, с помощью которой осуществляется химическое взаимодействие отдельных частей организма между собой посредством вырабатываемых тканями или органами гормонов и других биологически активных веществ.

2. Защитные функции крови связаны с тем, что клетки крови осуществляют защиту организма от инфекционно-токсической агрессии. Можно выделить следующие защитные функции:

а) фагоцитарная - лейкоциты крови способны пожирать (фагоцитировать) чужие клетки и инородные тела, попавшие в организм;

б) иммунная - кровь является местом, где находятся различного рода антитела, образующиеся в лимфоцитами в ответ на поступление микроорганизмов, вирусов, токсинов и обеспечивающие приобретенный и врожденный иммунитет.

в) гемостатическая (гемостаз - остановка кровотечения), заключающаяся в способности крови свертываться в месте ранения кровеносного сосуда и тем самым предотвращать смертельное кровотечение.

3. Гомеостатические функции . Заключаются в участии крови и находящихся в ее составе веществ и клеток в поддержании относительного постоянства ряда констант организма. Сюда относятся:

а) поддержание рН ;

б) поддержание осмотического давления ;

в) поддержание температуры внутренней среды.

Правда, последняя функция может быть отнесена и к транспортным, так как тепло разносится циркулирующей кровью по телу от места его образования к периферии и наоборот.

Количество крови в организме. Объем циркулирующей крови (ОЦК) .

В настоящее время имеются точные методы для определения общего количества крови в организме. Принцип этих методов заключается в том, что в кровь вводят известное количество вещества, а затем через определенные интервалы времени берутся пробы крови и в них определяется содержание введенного продукта. По степени полученного разбавления высчитывается объем плазмы. После этого кровь центрифугируют в капиллярной градуированной пипетке (гематокрите) для определения гематокритного показателя, т.е. соотношения форменных элементов и плазмы. Зная гематокритный показатель, легко определить и объем крови. В качестве индикаторов применяют нетоксичные медленно выводящиеся соединения, не проникающие через сосудистую стенку в ткани (красители, поливинилпиролидон, железодекстрановый комплекс и др.) В последнее время для этой цели широко используются радиоактивные изотопы.

Определения показывают, что в сосудах человека весом 70 кг. содержится примерно 5 литров крови, что составляет 7% массы тела (у мужчин 61,5+-8,6 мл/кг, у женщин - 58,9+-4,9 мл/кг массы тела).

Введение в кровь жидкости увеличивает на короткое время ее объем. Потери жидкости - уменьшают объем крови. Однако изменения общего количества циркулирующей крови, как правило, невелики, вследствие наличия процессов, регулирующих общий объем жидкости в кровеносном русле. Регуляция объема крови основана на поддержании равновесия между жидкостью в сосудах и тканях. Потери жидкости из сосудов быстро восполняются за счет поступления ее из тканей и наоборот. Более подробно о механизмах регуляции количества крови в организме мы будем говорить позднее.

1. Состав плазмы крови .

Плазма представляет собою желтоватого цвета слегка опалесцирующую жидкость, и является весьма сложной биологической средой, в состав которой входят белки, различные соли, углеводы, липиды, промежуточные продукты обмена веществ, гормоны, витамины и растворенные газы. В нее входят как органические, так и неорганические вещества (до 9%) и вода (91-92%). Плазма крови находится в тесной связи с тканевыми жидкостями организма. Из тканей в кровь поступает большое количество продуктов обмена, но, благодаря сложной деятельности различных физиологических систем организма, в составе плазмы в норме не происходит существенных изменений.

Количеств белков, глюкозы, всех катионов и бикарбоната удерживается на постоянном уровне и самые незначительные колебания в их составе приводят к тяжелым нарушениям в нормальной деятельности организма. В то же время содержание таких веществ, как липиды, фосфор, мочевина, может меняться в значительных пределах, не вызывая заметных расстройств в организме. Весьма точно регулируется в крови концентрация солей и водородных ионов.

Состав плазмы крови имеет некоторые колебания в зависимости от возраста, пола, питания, географических особенностей места проживания, времени и сезона года.

Белки плазмы крови и их функции . Общее содержание белков крови составляет 6,5-8,5%, в среднем -7,5%. Они различны по составу и количеству входящих в них аминокислот, растворимости, устойчивости в растворе при изменениях рН, температуры, солености, по электрофоретической плотности. Роль белков плазмы весьма многообразна: они принимают участие в регуляции водного обмена, в защите организма от иммуннотоксических воздействий, в транспорте продуктов обмена, гормонов, витаминов, в свертывании крови, питании организма. Обмен их происходит быстро, постоянство концентрации осуществляется путем непрерывного синтеза и распада.

Наиболее полное разделение белков плазмы крови осуществляется с помощью электрофореза. На электрофореграмме можно выделить 6 фракций белков плазмы:

Альбумины . Их содержится в крови 4,5-6,7%, т.е. 60-65% всех плазменных белков приходится на долю альбуминов. Они выполняют в основном питательно-пластическую функцию. Не менее важна транспортная роль альбуминов, так как они могут связывать и транспортировать не только метаболиты, но лекарства. При большом накоплении жира в крови часть его тоже связывается альбуминами. Поскольку альбуминам принадлежит очень высокая осмотическая активность, на их долю приходится до 80% всего коллоидно-осмотического (онкотического) давления крови. Поэтому уменьшение количества альбуминов ведет к нарушению водного обмена между тканями и кровью и появлению отеков. Синтез альбуминов происходит в печени. Молекулярный вес их 70-100 тыс., поэтому часть их может походить через почечный барьер и обратно всасываться в кровь.

Глобулины обычно всюду сопутствуют альбуминам и являются наиболее распространенными из всех известных белков. Общее количество глобулинов в плазме составляет 2,0-3,5%, т.е. 35-40% от всех белков плазмы. По фракциям их содержание следующее:

альфа1-глобулины - 0,22-0,55 г% (4-5%)

альфа2-глобулины - 0,41-0,71г% (7-8%)

бета-глобулины - 0,51-0,90 г% (9-10%)

гамма-глобулины - 0,81-1,75 г% (14-15%)

Молекулярный вес глобулинов 150-190 тыс. Место образования может быть различным. Большая часть синтезируется в лимфоидных и плазматических клетках ретикулоэндотелиальной системы. Часть - в печени. Физиологическая роль глобулинов многообразна. Так, гамма-глобулины являются носителями иммунных тел. Альфа- и бета- глобулины тоже имеют антигенные свойства, но специфической их функцией является участие в процессах свертывания (это плазменные факторы свертывания крови). Сюда же относятся большая часть ферментов крови, а так же трансферин, церуллоплазмин, гаптоглобины и др. белки.

Фибриноген . Этот белок составляет 0,2-0,4 г%, около 4% от всех белков плазмы крови. Имеет непосредственное отношение к свертыванию, во время которого выпадает в осадок после полимеризации. Плазма, лишенная фибриногена (фибрина), носит название кровяной сыворотки .

При различных заболеваниях, особенно приводящих к нарушениям белкового обмена, наблюдаются резкие изменения в содержании и фракционном составе белков плазмы. Поэтому анализ белков плазмы крови имеет диагностическое и прогностическое значение и помогает врачу судить о степени повреждения органов.

Небелковые азотистые вещества плазмы представлены аминокислотами (4-10 мг%), мочевиной (20-40 мг%), мочевой кислотой, креатином, креатинином, индиканом и др. Все эти продукты белкового обмена в сумме называются остаточным , или небелковым азотом. Содержание остаточного азота плазмы в норме колеблется от 30 до 40 мг. Среди аминокислот одна треть приходится на долю глютамина, который переносит в крови свободный аммиак. Увеличение количества остаточного азота наблюдается главным образом при почечной патологии. Количество небелкового азота в плазме крови мужчин выше, чем в плазме крови женщин.

Безазотистые органические вещества плазмы крови представлены такими продуктами, как молочная кислота, глюкоза (80-120 мг%), липиды, органические вещества пищи и многие другие. Общее их количество не превышает 300-500 мг%.

Минеральные вещества плазмы - это в основном катионы Na+, К+, Са+, Mg++ и анионами Cl-, HCO3, HPO4, H2PO4. Общее количество минеральных веществ (электролитов) в плазме достигает 1%. Количество катионов превышает количество анионов. Наибольшее значение имеют следующие минеральные вещества:

Натрий и калий . Количество натрия в плазме составляет 300-350 мг%, калия - 15-25 мг%. Натрий находится в плазме в виде хлористого натрия, бикарбонатов, а также в связанном с белками виде. Калий тоже. Ионы эти играют важную роль в поддержании кислотно-щелочного равновесия и осмотического давления крови.

Кальций . Общее его количество в плазме составляет 8-11 мг%. Он находится там или в связанном с белками виде, или в виде ионов. Ионы Са+ выполняют важную функцию в процессах свертывания крови, сократимости и возбудимости. Поддержание нормального уровня кальция в крови происходит при участии гормона паращитовидных желез, натрия - при участии гормонов надпочечников.

Кроме перечисленных выше минеральных веществ в плазме содержатся магний, хлориды, йод, бром, железо, и ряд микроэлементов, таких как медь, кобальт, марганец, цинк, и др., имеющие большое значение для эритропоэза, ферментативных процессов и т.п.

Физико-химические свойства крови

1.Реакция крови . Активная реакция крови определяется концентрацией в ней водородных и гидроксильных ионов. В норме кровь имеет слабощелочную реакцию (рН 7,36-7,45, в среднем 7,4+-0,05). Реакция крови является величиной постоянной. Это - обязательное условие нормального течения жизненных процессов. Изменение рН на 0,3-0,4 единицы приводит к тяжелым для организма последствиям. Границы жизни находятся в пределах рН крови 7,0-7,8. Организм удерживает величину рН крови на постоянном уровне благодаря деятельности специальной функциональной системы, в которой главное место уделяется имеющимся в самой крови химическим веществам, которые, нейтрализуя значительную часть поступающих в кровь кислот и щелочей, препятствуют сдвигам рН в кислую или щелочную сторону. Сдвиг рН в кислую сторону называется ацидоз , в щелочную - алкалоз.

К веществам, постоянно поступающим в кровь и могущим изменить величину рН, относятся молочная кислота, угольная кислота и другие продукты обмена, вещества, поступающие с пищей и др.

В крови имеются четыре буферные системы - бикарбонатная (углекислота/бикарбонаты), гемоглобиновая (гемоглобин / оксигемоглобин), белковая (кислые белки / щелочные белки) и фосфатная (первичный фосфат / вторичный фосфат).Подробно их работа изучается в курсе физической и коллоидной химии.

Все буферные системы крови, взятые вместе, создают в крови так называемый щелочной резерв , способный связывать кислые продукты, поступающие в кровь. Щелочной резерв плазмы крови в здоровом организме более или менее постоянен. Он может быть снижен при избыточном поступлении или образовании кислот в организме (например, при интенсивной мышечной работе, когда образуется много молочной и угольной кислот). Если это снижение щелочного резерва не привело еще к реальным изменениям рН крови, то такое состояние называют компенсированным ацидозом . При некомпенсированном ацидозе щелочной резерв расходуется полностью, что ведет к снижению рН (например, так бывает при диабетической коме).

Когда ацидоз связан с поступлением в кровь кислых метаболитов или других продуктов, он носит название метаболического или не газового. Когда же ацидоз возникает при накоплении в организме преимущественно углекислоты - он называется газовым . При избыточном поступлении в кровь продуктов обмена щелочного характера (чаще с пищей, так как продукты обмена в основном кислые) то щелочной резерв плазмы увеличивается (компенсированный алкалоз ). Он может увеличиваться, например, при усиленной гипервентиляции легких, когда имеет место избыточное удаление углекислоты из организма (газовый алкалоз). Некомпенсированный алкалоз бывает чрезвычайно редко.

Функциональная система поддержания рН крови (ФСрН) включает в себя целый ряд анатомически неоднородных органов, в комплексе позволяющих достигнуть очень важного для организма полезного результата - обеспечения постоянства рН крови и тканей. Появление кислых метаболитов или щелочных веществ крови сразу же нейтрализуется соответствующими буферными системами и одновременно от специфических хеморецепторов, заложенных как в стенках кровеносных сосудов, так и в тканях, в ЦНС поступают сигналы о возникновении сдвига в реакциях крови (если таковой действительно произошел). В промежуточном и продолговатом отделах мозга находятся центры, регулирующие постоянство реакции крови. Оттуда по афферентным нервам и по гуморальным каналам команды поступают к исполнительным органам, способным исправить нарушение гомеостаза. К числу таких органов относятся все органы выделения (почки, кожа, легкие), которые выбрасывают из организма как сами кислые продукты, так и продукты их реакций с буферными системами. Кроме того, в деятельности ФСрН принимают участие органы ЖКТ, которые могут быть как местом выделения кислых продуктов, так и местом, откуда всасываются необходимые для их нейтрализации вещества. Наконец, к числу исполнительных органов ФСрН относится и печень, где происходит дезинтоксикация потенциально вредных продуктов, как кислых так и щелочных. Надо отметить, что кроме этих внутренних органов, в ФСрН есть и внешнее звено - поведенческое, когда человек целенаправленно ищет во внешней среде вещества, которых ему не хватает для поддержания гомеостаза ("Кисленького хочется!"). Схема этой ФС представлена на схеме.

2. Удельный вес крови (УВ). УВ крови зависит в основном от числа эритроцитов, содержащегося в них гемоглобина и белкового состава плазмы. У мужчин он равен 1,057, у женщин - 1,053, что объясняется различным содержанием эритроцитов. Суточные колебания не превышают 0.003. Увеличение УВ закономерно наблюдается после физического напряжения и в условиях воздействия высоких температур, что свидетельствует о некотором сгущении крови. Понижение УВ после кровепотери связано с большим притоком жидкости из тканей. Наиболее распространенный метод определения - медно-сульфатный, принцип которого заключается в помещении капли крови в ряд пробирок с растворами сульфата меди известного удельного веса. В зависимости от УВ крови капля тонет, всплывает или плавает в том месте пробирки, где ее поместили.

3. Осмотические свойства крови . Осмосом называется проникновение молекул растворителя в раствор через разделяющую их полупроницаемую перепонку, через которую не проходят растворенные вещества. Осмос совершается и в том случае, если такая перегородка разделяет растворы с разной концентрацией. При этом растворитель перемещается через мембрану в сторону раствора с большей концентрацией до тех пор, пока эти концентрации не сравняются. Мерой осмотических сил является осмотическое давление (ОД). Оно равно такому гидростатическому давлению, который над приложить к раствору чтобы прекратить в него проникновение молекул растворителя. Величина эта определяется не химической природой вещества, а числом растворенных частиц. Она прямо пропорциональна молярной концентрации вещества. Одно- молярный раствор имеет ОД 22,4 атм., так как осмотическое давление определяется давлением, которое может оказывать в равном объеме растворенное вещество в виде газа (1гМ газа занимает объем 22,4 л. Если это количество газа поместить в сосуд объемом 1л, он будет давить на стенки с силой 22,4 атм.).

Осмотическое давление следует рассматривать не как свойство растворенного вещества, растворителя или раствора, а как свойство системы, состоящей из раствора, растворенного вещества и разделяющей их полупроницаемой перепонки.

Кровь как раз является такой системой. Роль полупроницаемой перегородки в этой системе играют оболочки клеток крови и стенки кровеносных сосудов, растворителем служит вода, в которой находятся минеральные и органические вещества в растворенном виде. Эти вещества создают в крови среднюю молярную концентрацию около 0,3 гМ, и поэтому развивают осмотическое давление, равное для крови человека 7,7 - 8,1 атм. Почти 60% этого давления приходится на долю поваренной соли (NaCl).

Величина осмотического давления крови имеет важнейшее физиологическое значение, так как в гипертонической среде вода выходит из клеток (плазмолиз ), а в гипотонической - наоборот, входит в клетки, раздувает их и даже может разрушить (гемолиз ).

Правда, гемолиз может наступать не только при нарушении осмотического равновесия, но и под действием химических веществ - гемолизинов. К ним относятся сапонины, желчные кислоты, кислоты и щелочи, аммиак, спирты, змеиный яд, бактериальные токсины и др.

Величина осмотического давления крови определяется криоскопическим методом, т.е. по точке замерзания крови. У человека температура замерзания плазмы равна -0,56-0,58оС. Осмотическое давление крови человека соответствует давлению 94% NaCl, такой раствор носит название физиологического .

В клинике, когда возникает необходимость введения в кровь жидкости, например, при обезвоживании организма, или при внутривенном введении лекарств обычно применяют этот раствор, который изотоничен плазме крови. Однако, хотя его и называют физиологическим, он таковым в строгом смысле не является, так как в нем отсутствуют остальные минеральные и органические вещества. Более физиологическими растворами являются такие, как раствор Рингера, Рингер-Локка, Тироде, Крепс-Рингера и т.п. Они приближаются к плазме крови по ионному составу (изоионичны). В ряде случаев, особенно для замены плазмы при кровепотере, применяются жидкости кровезаменители, приближающиеся к плазме не только по минеральному, но и по белковому, крупномолекулярному составу.

Дело в том, что белки крови играют большую роль в правильном водном обмене между тканями и плазмой. Осмотическое давление белков крови называется онкотическим давлением . Оно равно примерно 28 мм.рт.ст. т.е. составляет менее 1/200 общего осмотического давления плазмы. Но так как капиллярная стенка очень мало проницаема для белков и легко проходима для воды и кристаллоидов, то именно онкотическое давление белков является наиболее эффективным фактором, удерживающим воду в кровеносных сосудах. Поэтому уменьшение количества белков в плазме приводит к появлению отеков, к выходу воды из сосудов в ткани. Из белков крови наибольшее онкотическое давление развивают альбумины.

Функциональная система регуляции осмотического давления . Осмотическое давление крови млекопитающих и человека в норме держится на относительно постоянном уровне (опыт Гамбургера с введением в кровь лошади 7 л 5% раствора сернокислого натрия). Все это происходит за счет деятельности функциональной системы регуляции осмотического давления, которая тесно увязана с функциональной системой регуляции водно-солевого гомеостаза, так как использует те же исполнительные органы.

В стенках кровеносных сосудов имеются нервные окончания, реагирующие на изменения осмотического давления (осморецепторы ). Раздражение их вызывает возбуждение центральных регуляторных образований в продолговатом и промежуточном мозге. Оттуда идут команды, включающие те или иные органы, например, почки, которые удаляют избыток воды или солей. Из других исполнительных органов ФСОД надо назвать органы пищеварительного тракта, в которых происходит как выведение избытка солей и воды, так и всасывание необходимых для восстановления ОД продуктов; кожу, соединительная ткань которой вбирает в себя при понижении осмотического давления избыток воды или отдает ее последней при повышении осмотического давления. В кишечнике растворы минеральных веществ всасываются только в таких концентрациях, которые способствуют установлению нормального осмотического давления и ионного состава крови. Поэтому при приеме гипертонических растворов (английская соль, морская вода) происходит обезвоживание организма за счет выведения воды в просвет кишечника. На этом основано слабительное действие солей.

Фактором, способным изменять осмотическое давление тканей, а также крови, является обмен веществ, ибо клетки тела потребляют крупномолекулярные питательные вещества, и выделяют взамен значительно большее число молекул низкомолекулярных продуктов своего обмена. Отсюда понятно, почему венозная кровь, оттекающая от печени, почек, мышц имеет большее осмотическое давление, чем артериальная. Не случайно, что в этих органах находится наибольшее количество осморецепторов.

Особенно значительные сдвиги осмотического давления в целом организме вызывает мышечная работа. При очень интенсивной работе деятельность выделительных органов может оказаться недостаточной для сохранения осмотического давления крови на постоянном уровне и в итоге может наступить его увеличение. Сдвиг осмотического давления крови до 1,155% NaCl делает невозможным дальнейшее выполнение работы (один из компонентов утомления).

4. Суспензионные свойства крови . Кровь является устойчивой суспензией мелких клеток в жидкости (плазме), Свойство крови как устойчивой суспензии нарушается при переходе крови к статическому состоянию, что сопровождается оседанием клеток и наиболее отчетливо проявляется со стороны эритроцитов. Отмеченный феномен используется для оценки суспензионной стабильности крови при определении скорости оседания эритроцитов (СОЭ).

Если предохранить кровь от свертывания, то форменные элементы можно отделить от плазмы простым отстаиванием. Это имеет практическое клиническое значение, так как СОЭ заметно меняется при некоторых состояниях и болезнях. Так, СОЭ сильно ускоряется у женщин при беременности, у больных туберкулезом, при воспалительных заболеваниях. При стоянии крови эритроциты склеиваются друг с другом (агглютинируют), образуя так называемые монетные столбики, а затем и конгломераты монетных столбиков (агрегация), которые оседают тем быстрее, чем больше их величина.

Агрегация эритроцитов, их склеивание зависит от изменения физических свойств поверхности эритроцитов (возможно, с изменением знака суммарного заряда клетки с отрицательного на положительный), а также от характера взаимодействия эритроцитов с белками плазмы. Суспензионные свойства крови зависят преимущественно от белкового состава плазмы: увеличение содержания грубодисперсных белков при воспалении сопровождается снижением суспензионной устойчивости и ускорением СОЭ. Величина СОЭ зависит и от количественного соотношения плазмы и эритроцитов. У новорожденных СОЭ равна 1-2 мм/час, у мужчин 4-8 мм/час, у женщин 6-10 мм/час. Определяют СОЭ по методу Панченкова (см. практикум).

Ускоренной СОЭ, обусловленной изменением белков плазмы особенно при воспалении, соответствует и повышенная агрегация эритроцитов в капиллярах. Преимущественная агрегация эритроцитов в капиллярах связана с физиологическим замедлением тока крови в них. Доказано, что в условиях замедленного кровотока увеличение содержания в крови грубодисперсных белков приводит к более выраженной агрегации клеток. Агрегация эритроцитов, отражая динамичность суспензионных свойств крови, является одним из древнейших защитных механизмов. У беспозвоночных агрегация эритроцитов играет ведущую роль в процессах гемостаза; при воспалительной реакции это приводит к развитию стаза (остановки кровотока в пограничных областях), способствуя отграничению очага воспаления.

В последнее время доказано, что в СОЭ имеет значение не столько заряд эритроцитов, сколько характер его взаимодействия с гидрофобными комплексами белковой молекулы. Теория нейтрализации заряда эритроцитов белками не доказана.

5. Вязкость крови (реологические свойства крови). Вязкость крови, определяемая вне организма, превышает вязкость воды в 3-5 раз и зависит преимущественно от содержания эритроцитов и белков. Влияние белков определяется особенностями структуры их молекул: фибриллярные белки повышают вязкость в значительно большей степени, чем глобулярные. Выраженный эффект фибриногена связан не только с высокой внутренней вязкостью, но обусловлен и вызываемой им агрегацией эритроцитов. В физиологических условиях вязкость крови in vitro нарастает (до 70%) после напряженной физической работы и является следствием изменения коллоидных свойств крови.

In vivo вязкость крови характеризуется значительной динамичностью и меняется в зависимости от длины и диаметра сосуда и скорости кровотока. В отличие от однородных жидкостей, вязкость которых нарастает с уменьшением диаметра капилляра, со стороны крови отмечается обратное: в капиллярах вязкость уменьшается. Это связано с неоднородностью структуры крови, как жидкости, и изменением характера протекания клеток по сосудам разного диаметра. Так, эффективная вязкость, измеренная особыми динамическими вискозиметрами, такова: аорта - 4,3; малая артерия - 3,4; артериолы - 1,8; капилляры - 1; венулы - 10; малые вены - 8; вены 6,4. Показано, что если бы вязкость крови была бы постоянной величиной, то сердцу пришлось бы развивать в 30-40 раз большую мощность, чтобы протолкнуть кровь через сосудистую систему, так как вязкость участвует в формировании периферического сопротивления.

Снижение свертываемости крови в условиях введения гепарина сопровождается понижением вязкости и одновременно ускорением скорости кровотока. Показано, что вязкость крови всегда снижается при анемиях, повышается при полицитемиях, лейкемии, некоторых отравлениях. Кислород понижает вязкость крови, поэтому венозная кровь более вязкая, чем артериальная. При повышении температуры вязкость крови понижается.





error: Контент защищен !!