Биологически активные вещества строение. Классификация биологически активных веществ. Существуют ли биологически активные вещества, способные омолаживать кожу

Биологически активные вещества (БАВ) - химические вещества, необходимые для поддержания жизнедеятельности живых организмов, обладающие высокой физиологической активностью при небольших концентрациях по отношению к определенным группам живых организмов или их клеткам, злокачественным опухолям, избирательно задерживающие или ускоряющие их рост или полностью подавляющие их развитие .

В пище находится большинство из них, например: алкалоиды, гормоны и гормоноподобные соединения, витамины, микроэлементы, биогенные амины, нейромедиаторы. Все они обладают фармакологической активностью, а многие служат ближайшими предшественниками сильнодействующих веществ, относящихся к фармакологии .

БАВ-микронутриенты применяются для лечебно-профилактических целей в составе биологически активных пищевых добавок .

История изучения

Выделение биологически активных веществ в особую группу соединений обсуждалось на специальной сессии медико-биологического отделения Академии медицинских наук СССР в 1975 году .

В настоящий момент сложилось мнение, будто биологически активные вещества очень важны, но выполняют лишь частные, вспомогательные функции. Это ошибочное мнение обязано своим появлением тому, что в специальной и научно-популярной литературе функции каждого БАВ рассматривались в отдельности друг от друга. Этому содействовал и преимущественный акцент на специфических функциях микронутриентов. В результате появились «штампы» (например, что витамин С служит для профилактики цинги и только) .

Физиологическая роль

Биологически активные вещества имеют крайне разнообразные физиологические функции .

Литература

  • Георгиевский В. П., Комиссаренко П. Ф., Дмитрук С. Е. Биологически активные вещества лекарственных растений . - Новосибирск: Наука, Сиб. отд-ние, 1990. - 333 с. - ISBN 5-02-029240-0 .
  • Попков Н. А., Егоров И. В., Фисинин В. И. Корма и биологически активные вещества : Монография. - Беларуская навука, 2005. - 882 с. - ISBN 985-08-0632-Х.
  • С. Галактионов Биологически активные . - «Молодая гвардия», серия «Эврика», 1988.

Примечания

См. также

  • Суточная потребность человека в биологически активных веществах

Wikimedia Foundation . 2010 .

Смотреть что такое "Биологически активные вещества" в других словарях:

    Все значимые для организмов соединения, способные регулировать реализацию адаптивного потенциала. Экологический энциклопедический словарь. Кишинев: Главная редакция Молдавской советской энциклопедии. И.И. Дедю. 1989 … Экологический словарь

    Биологически активные вещества - (БАВ) общее название веществ, имеющих выраженную физиологическую активность... Источник: ВП П8 2322. Комплексная программа развития биотехнологий в Российской Федерации на период до 2020 года (утв. Правительством РФ 24.04.2012 N 1853п П8) … Официальная терминология

    биологически активные вещества - сокр. БАВ Биологически активные вещества – вещества, которые могут действовать на биологические системы, регулируя их жизнедеятельность, что проявляется в эффектах стимулирования, угнетения, развития тех или иных признаков. Общая химия: учебник… … Химические термины

    Биологически активные вещества – - общее название органи ческих соединений, участвующих в осуществлении к. либо функ ций организма, обладают высокой специфичностью действия: гор моны, ферменты и др.; БАВ … Словарь терминов по физиологии сельскохозяйственных животных

    Лучистые грибки обладают очень ценным свойством способностью образовывать весьма разнообразные вещества, многие из которых имеют большое практическое значение. В естественных местах обитания между микроорганизмами складываются различные… … Биологическая энциклопедия

    Вещества, полученные путем микробиологического и химического синтеза, вводимые в состав комбикормовой продукции с целью профилактики заболеваний, лечения, стимуляции роста и продуктивности животных. [ГОСТ Р 51848 2001] Тематики корма для животных … Справочник технического переводчика

    биологически активные вещества (комбикормовой продукции) - 21 биологически активные вещества (комбикормовой продукции): Вещества, полученные путем микробиологического и химического синтеза, вводимые в состав комбикормовой продукции с целью профилактики заболеваний, лечения, стимуляции роста и… … Словарь-справочник терминов нормативно-технической документации

    Биологически активные добавки (БАД) - биологически активные добавки природные (идентичные природным) биологически активные вещества, предназначенные для употребления одновременно с пищей или введения в состав пищевых продуктов;... Источник: Федеральный закон от 02.01.2000 N 29 ФЗ… … Официальная терминология

    Биологически активные добавки - природные (идентичные природным) биологически активные вещества, предназначенные для употребления одновременно с пищей или введения в состав пищевых продуктов … Энциклопедический словарь-справочник руководителя предприятия

    БИОЛОГИЧЕСКИ АКТИВНЫЕ ДОБАВКИ - в соответствии с Федеральным законом «О качестве и безопасности пищевых продуктов» природные (идентичные природным) биологически активные вещества, предназначенные для употребления одновременно с пищей или введения в состав пищевых продуктов … Юридическая энциклопедия

Книги

  • Биологически активные вещества растительного происхождения. Том 2 , . Монография - наиболее полный справочник в области медицинской ботаники. Включены сведения о более чем 1500 биологически активных соединениях растительного происхождения с указанием их…
  • Биологически активные вещества в физиологических и биохимических процессах в организме животного , М. И. Клопов, В. И. Максимов. В пособии изложены современные представления о строении, механизме действия, роли в процессах жизнедеятельности и функциях организма биологически активных веществ (витамины, ферменты,…

Биологически активные вещества (БАВ) — (греч. Bios — жизнь, означает связь с жизненными процессами и соответствует слову «биол.» + Лат. Activus — активный, то есть вещество, которое имеет биологическую активность) — это соединения, которые в результате своих физико-химических свойств имеют определенную специфическую активность и выполняют, изменяют или влияют на каталитическую (ферменты, витамины, коферменты), энергетической (углеводы, липиды), пластическую (углеводы, липиды, белки), регуляторную (гормоны, пептиды) или другие функции в организме.

Смысл словосочетания может существенно меняться в зависимости от сферы применения. В научном смысле (нейрофизиологическом, психическом, химическом процессах) — повышение активности жизненных процессов организма. Иными словами, биологическое действие — это биохимические, физиологические, генетические и другие изменения, происходящие в живых клетках и организме в результате действия БАВ.

Вообще, полностью индифферентных веществ в природе нету. Все вещества выполняют какие-то функции в организме человека, животных, растений или используются для достижения определенных эффектов. Например вода, связанная с метаболическими функциями живой клетки, является активным участником транспортировки питательных веществ и продуктов обмена в организме, субстрата ряда ферментативных реакций.

Классификация

Общая

С целью классификации все БАР разделяют:

  • эндогенные
  • экзогенные

К эндогенным веществам относят

  • химические элементы (кислород, водород, калий, фосфор и др.)
  • низкомолекулярные (глюкоза, АТФ, этанол, адреналин и др.)
  • ВМС (ДНК, РНК, белки)

Они входят в состав организма, участвуют в обменных процессах веществ и имеют выраженную биологическую (физиологическую) активность.

Экзогенными считают БАР, поступающих в организм различными путями.

По действию на организм

С учетом взаимодействия с организмом БАР разделяют на

  • биоинертные, которые не усваиваются организмом (целлюлоза, гемицеллюлоза, лигнин, кремнийорганические полимеры, поликарбонат и др.)
  • биосовместимые, которые медленно растворяются или ферментируются в организме (полисахариды, поливинилпирролидон, Полиакриламид, поливиниловый спирт, полиэтиленоксид, водорастворимые эфиры целлюлозы и др.)
  • бионесумисни, которые вызывают поражения ткани организма (полиантрацены, некоторые полиамиды и многие др.)
  • биоактивные направленного действия (винилин полимеры в сочетании с лекарственными веществами).

Биоинертные и биосовместимые вещества широко используются в производстве лекарств как вспомогательные вещества, а также для получения тары, упаковочных и конструкционных материалов и т.

По токсичности

  • По токсичности сама биологически активная и токсичное вещество является тоналка Марины Вельгус

Проявление токсичности зависит от концентрации (дозы) БАР, путей поступления в организм, чувствительности последнего, поведения БАР в организме и других факторов (например. Ядовитые вещества используются как лекарства в определенных дозах).

По происхождению

БАР бывают

  • природные
  • синтетические

Природные БАР образуются в процессе жизнедеятельности живых организмов. Они могут образовываться в процессе обмена веществ, выделяться в окружающую среду (экзогенные) или накапливаться внутри организма (эндогенные).

Другие варианты классификации

Возможны другие подходы к классификации БАР, например. в зависимости от природы (растительного или животного происхождения), мл. м., размера частиц, устойчивости к температуре, возможности накапливаться в организме, выявлять наркотические и другие свойства.

Функции

Основными функциями БАР являются:

  • клеточный обмен веществ в организме
  • преобразования веществ;
  • синтез необходимых веществ;
  • катализация биореакций в организме.

Свойства

Основными характерными свойствами БАР являются:

— Термолабильность,

— Биологическая активность,

— Воздействие на них активаторов и ингибиторов,

— Стерильность получения и др.

Одним из важнейших свойств БАВ является их биологическая активность. Она зависит от уровня рН среды, температуры и может теряться в процессе нагревания в результате повышения локальных значений температур, образования неравномерности потоков раствора, перегрева пристенного слоя раствора более температур термической устойчивости и длительном времени обработки.

Биологическая активность

За единицу биологической активности химического вещества принимают минимальное количество этого вещества, способной подавлять развитие или задерживать рост определенного числа клеток, тканей стандартного штамма (биотеста) в единице питательной среды.

Для каждого вида БАР существуют свои методы определения биологической активности. Так, для ферментов, метод определения активности Е заключается в регистрации скорости исчезновения субстрата (S) (вещества, на которую действует фермент) или скорости образования продуктов реакции ([Р]). Активность выражают в международных единицах (МЕ — это такое количество фермента, которая при заданных условиях катализирует превращение 1 мкмоль субстрата за 1 мин.). При проведении исследований активность опытного образца сравнивают с активностью стандартного образца при одинаковых условиях и рассчитывают активность А в соответствующих единицах МЕ.

Для каждого витамина существует свой метод определения активности (количества витамина в опытном образце (например, таблетках) в единицах МЕ). Эти методы сложны и требуют использования высокоточного, дорогого и сложного оборудования (спектрофотометров, флуорометр и др.), Многих химических реактивов и проведения сложных расчетов. При проведении исследований необходимо иметь опыт работы с оборудованием, химическими веществами, иметь навыки построения калибровочных графиков. К наиболее распространенным методам относятся методы визуального титрования, высокоэффективной хроматографии и инверсионной вольтамперометрии.

При производстве БАР на стадиях указанных в технологическом регламенте проводят контроль качества полученной продукции по различным критериям. Среди них, одним из главных, заданная для определенного вида БАР биологическая активность. Поэтому при производстве БАР очень важно правильно подобрать технологические режимы их обработки, обеспечивающие максимальное качество при минимальных затратах тепловой энергии.

Источники поступления в организм

Главным источником поступления БАР в организм лекарство, пищевые и другие продукты. Многие БАР попадает в организм с окружающей среды с воздухом и питьевой водой. В условиях растущего химического загрязнения окружающей среды в организм человека может попадать большое количество ксенобиотиков, которые могут вызвать заболевание. Биологическую активность имеют алкоголь, ядовитые вещества, содержащиеся в табачном дыме и наркотических веществах.

Изображения по теме



Биологически активные вещества (БАВ) - (греч. bios - жизнь, что означает связь с жизненными процессами и соответствует слову «биол.» + лат. аctivus - активный, то есть вещество, которое имеет биологическую активность) - это соединение, которое вследствие своих физико-химических свойств имеет определенную специфическую активность и выполняет или влияет, меняет каталитическую (ферменты, витамины, коферменты), энергетическую (углеводы, липиды), пластичную (углеводы, липиды, белки), регуляторную (гормоны, пептиды) или иную функцию в организме.





*************************************************************************************************************

Под биологически активными веществами подразумевают вещества, которые обладают высокой физиологической активностью и воздействуют на организм в самых малых дозах. Они могут ускорять обменные процессы, улучшать метаболизм, участвовать в синтезе витаминов, способствовать регулировке правильной работы систем организма.

В косметологии широко используют препараты, обладающие высокой биологической активностью, не ограничиваясь при этом только наружным применением. Биологически активные средства в небольших дозах оказывают благоприятный эффект и с успехом используются в косметических изделиях (кремы, лосьоны, шампуни) для предупреждения и лечения косметических недостатков путем стимуляции метаболических процессов в коже, а также для защиты ее от вредных метеорологических и токсических факторов.

Лечебные и косметические свойства растений и других природных продуктов, определяются наличием в их составе различных биологически активных веществ (БАВ). А именно: углеводов, жирных масел, сапонинов, флавоноидов, дубильных веществ, витаминов, фитогормонов и др.


Аминокислоты
служат для синтеза белков, из которых в свою очередь формируются железы, мышцы, сухожилия, волосы — словом, все части организма. Без определенных аминокислот невозможно нормальное функционирование головного мозга, так как именно аминокислота позволяет передавать нервные импульсы от одной нервной клетки к другой. Кроме того, аминокислоты регулируют энергетический обмен и способствуют тому, чтобы витамины и микроэлементы усваивались и работали в полной мере. К наиболее важным аминокислотам относятся триптофан, метионин и лизин, которые как раз не синтезируются человеком и должны поступать с пищей. Если их не хватает, то нужно принимать их в составе БАД. Триптофан содержится в мясе, бананах, овсе, финиках, кунжуте, арахисе; метионин — в рыбе, молочных продуктах, яйцах; лизин — в мясе, рыбе, молочных продуктах, пшенице. Если не хватает аминокислот, организм пытается извлечь их сначала из собственных тканей. А это ведет к их повреждению. В первую очередь организм извлекает аминокислоты из мышц — для него важнее прокормить мозг, чем бицепсы. Отсюда первым симптомом нехватки незаменимых аминокислот являются слабость, быстрая утомляемость, истощение, затем к этому присоединяются анемия, потеря аппетита и ухудшение состояния кожи. Очень опасна нехватка незаменимых аминокислот в детстве — это может привести к задержке роста и психического развития.

Углеводы . В состав косметических кремов и масок вводятся слизи и камеди (абрикосовая, трагакантовая). Они убирают раздражение и хорошо матируют кожу, обладают эмульгирующими и обволакивающими свойствами. Содержатся в семенах льна, листьях мать-и-мачехи, корнях алтея.

Органические кислоты поддерживают в организме кислотно-щелочное равновесие и участвуют во многих обменных процессах. Каждая кислота имеет свой спектр действия. Аскорбиновая и янтарная кислоты обладают мощным антиоксидантным действием, за что их еще называют эликсиром молодости. Бензойная кислота обладает антисептическим действием и помогает бороться с воспалительными процессами. Олеиновая кислота улучшает работу сердечной мышцы, препятствует атрофии мышц. Ряд кислот входит в состав гормонов. Много органических кислот входит в состав овощей и фруктов. Следует знать, что употребление слишком большого количества БАДов, содержащих органические кислоты, может привести к тому, что организму будет оказана медвежья услуга — произойдет излишне ощелачивание организма, что приведет к нарушению работы печени, ухудшению вывода токсинов.

Ферменты являются биологическими катализаторами многих процессов, протекающих в организме. Иногда их называют энзимами. Они помогают улучшить пищеварение, выводят токсины из организма, стимулируют мозговую деятельность, укрепляют иммунитет, участвуют в обновлении организма. Могут быть растительного или животного происхождения. Сейчас получены препараты, избирательно действующие на систему - , протеолитические ферменты (трипсин, химотрипсин, лизоцим-хлорид и др.), препараты, восстанавливающие сниженную активность ферментов, а также замедляющие их активность.

БАД к пище используются для:

  • восполнение недостаточного поступления с рационом белка и отдельных незаменимых аминокислот, липидов и отдельных жирных кислот (в частности, полиненасыщенных высших жирных кислот), углеводов и сахаров, витаминов и витаминоподобных веществ, макро- и микроэлементов пищевых волокон, органических кислот, биофлаваноидов, эфирных масел, экстрактивных веществ и др.;
  • уменьшение калорийности рациона, регулирования (снижения или повышения) аппетита и массы тела;
  • повышение неспецифической резистентности организма, снижения риска развития заболеваний и обменных нарушений;
  • осуществление в физиологических границах регуляции функций организма;
  • связывания в желудочно-кишечном тракте и выведения чужеродных веществ;
  • поддержания нормального состава и функциональной активности кишечной микрофлоры.

Фитонциды обладают способностью уничтожать или тормозить размножение бактерий, микроорганизмов, грибков. Известно, что они убивают вирус гриппа, дизентерийную и туберкулезную палочку, обладают ранозаживляющим действием, регулируют секреторную функцию желудочно-кишечного тракта, улучшают сердечную деятельность. Особенно ценятся фитонцидные свойства чеснока, лука, сосны, ели, эвкалипта.

Пектины - полисахариды клеточных стенок растений. Применяются в виде компрессов, добавок к лосьонам, маскам и кремам. Получают из яблок, малины, морских водорослей.

Эфирные масла - летучие смеси ароматических веществ. В косметологии используют эфирные масла мяты, лаванды, розы, шалфея, ромашки и душицы. Масла вводят в состав тоников и порошков. Они оказывают освежающее, дезинфицирующее, антиаллергическое, противовоспалительное и антисептическое действие.

Алкалоиды — это биологически активные азотсодержащие вещества, содержащиеся в растениях. Они очень активны, большинство алкалоидов в большой дозе ядовиты. В небольшой же это ценнейшее лечебное средство. Как правило алкалоиды обладают избирательным воздействием. К алкалоидам относятся такие вещества, как кофеин, атропин, хинин, кодеин, теобромин. Кофеин оказывает возбуждающее воздействие на нервную систему, а кодеин, к примеру, подавляет кашель.

Сапонины . Снимают воспаление и восстанавливают водный баланс кожи. Применяют в изготовлении косметики для увядающей кожи. Содержатся в фиалке трехцветной, розмарине, хвоще, мыльнянке лекарственной.

Флавоноиды . Замедляют процессы старения кожи. На кожу оказывают противовоспалительное, дезинфицирующее, спазмолитическое и регенерирующее действие. Содержатся в календуле, фиалке трехцветной, зверобое продырявленном, стальнике полевом и солодке.

Дубильные вещества . Обладают бактерицидными, противовоспалительными и вяжущими свойствами. Растения, содержащие дубильные вещества, применяют в косметологии для обработки кожи после механической чистки. Содержатся в коре дуба, чабреце, зверобое, плодах черники.

Смолы . Антисептическое действие. Используют при облысении, лечении трофических язв и для заживления ран. Содержатся в сосне, березовых почках, алоэ.

Фитогормоны . Оказывают стимулирующее действие на функциональное состояние стареющей кожи. В отличие от гормональных препаратов не оказывают вредных побочных действий. В частности, шишки хмеля, листья шалфея и крапивы, используют в косметологических средствах для увядающей кожи.

Витамины выполняют роль катализаторов биохимических процессов. Поэтому витамины наиболее часто применяются в косметических препаратах, прежде всего, жирорастворимые — , F, Е, D, что обусловлено их ролью в физиологических процессах кожи, высокой биологической активностью и частым возникновением в коже местной витаминной недостаточности. Перечисленные витамины, являясь биоантиоксидантами, подвержены интенсивным процессам окисления. Цепные реакции окисления витаминов протекают под действием света, температуры, некоторых ферментов, в присутствии воды, металлов, а также аутокаталитически, что приводит к полному или частичному разрушению витаминов в течение нескольких часов и сопровождается потерей их биологической активности. Установлено, что стабильность витаминов в составе различных лекарственных, профилактических средств, пищевых продуктов и др. снижается с уменьшением их концентраций. Поэтому для обеспечения стабильности витаминов в косметических средствах, где они используются в низких концентрациях, добавляют специальные стабилизаторы — антиоксиданты.

надежно защитит кожу от ветра и низких температур. Великолепный крем бережно позаботится о коже, предохранит ее от потери влаги, усилит иммунную защиту. Вернет коже эластичность. Предотвратит обветривание и шелушение. Крем можно использовать под макияж, так как он не оставляет на лице жирной пленки.

Полисахариды

Понятие. Полисахариды- высокомолекулярные продукты конденсации более пяти моносахаридов и их производных, связанных друг с другом О- гликозидными связями, и образующие линейные или разветвленные цепи. Молекулярная масса полисахаридов колеблется от нескольких тысяч до нескольких миллионов единиц. В составе полисахаридов обнаружено свыше 20 различных видов моносахаридов и их производных, наиболее часто встречаются: из гексоз- D- глюкоза, D- галактоза, L- фруктоза, D-манноза; из пентоз- D- ксилоза, L- арабиноза; из дезоксисахаров- L- рамноза, D- фукоза; из продуктов восстановления D- маннозы- спирт манит; из продуктов окисления моносахаридов- D- глюкуроновая, D- маннуроновая, D- галактуроновая, D-гулуроновая кислоты. Моносахариды и их производные входят в состав полисахаридов в пиранозной, реже фуранозной форме. Образование О- гликозидной связи происходит за счет полуацетального гидроксила одного моносахарида и водопрода гидроксильной группы другого моносахарида.

Классификация. Полисахариды делят на два типа: гомополисахариды (гомополимеры) и гетерополисахариды (гетерополимеры). Гомополисахариды построены из моносахаридных единиц одного типа, а гетерополисахариды- из остатков различных моносахаридов и их производных. Полисахариды можно классифицировать по функции, по происхождению, по кислотности, по характеру скелета.

Биологическая роль. Подвергаясь окислительным превращениям, полисахариды обеспечивают все живые клетки энергией. Они входят в состав клеточных оболочек и других структур, участвуют в защитных реакциях организма.

Физические свойства. Полисахариды- это большей частью аморфные вещества, нерастворимые в неполярных растворителях и спирте. Растворимость в воде разнообразна: амилоза, гликоген, пектин, агар- агар, слизи растворимы в воде с образованием каллоидных растворов или гелей, а целлюлоза, хитин некоторые камеди в воде нерастворимы.

Химические свойства. Полисахариды подвергаются кислотному и ферментативному гидролизу с образованием моно- или олигосахаридов. Для извлечения полисахаридов из природного сырья используют горячую или холодную воду, растворы кислот или щелочей.

Качественный и количественный анализ. Методы качественного и количественного анализа основаны на физико-химических свойствах полисахаридов. Количественное содержание полисахаридов в растительном сырье, как правило определяют гравиметрическим методом.

Особенности заготовки, сушки, хранения. Собирают лекарственное растительное сырье, содержащее полисахариды, в период максимального накопления действующих веществ. Надземные части растений заготавливают только в сухую погоду. Подземные органы содержащие слизь, обычно не моют, но иногда снимают пробку. Сушка предпочтительна искусственная, при температуре 50-60 С. Хранят сырье в сухом, прохладном (10-15 С) помещении, оберегая от амбарных вредителей. При увлажнении сырье отсыревает, плесневеет, прокисает, темнеет, поражается микроорганизмами.



Формакологичиские свойства . Полисахариды и их производные обладают способностью пролонгировать действия лекарств и иммунологической активностью, оказывают противовоспалительное, обволакивающее и ранозаживляющее действие.

Распространение в природе и применение в медицине. К растительным полисахаридам, или фитополисахаридам, относятся целлюлоза, инулин, крахмал, слизи, камеди, пектиновые вещества.

Целлюлоза (клетчатка)- полисахарид, составляющий основную массу клеточных стенок растений. Молекула клетчатки у разных растений содержит от 1400 до 10 000 остатков глюкозы, которые соединены между собой β- 1,4 гликозидными связями в линейные цепи. В медицине используется вата Gossypium, более чем на 95% состоящая из клетчатки. Вата является исходным материалом для получения коллодия и различных производных целлюлозы, находящих широкое применение в качестве вспомогательных веществ при изготовлении разных лекарственных форм. В технике из целлюлозы производят бумагу, целлофан, сорбенты, взрывчатые вещества и т.д.

Инулин- высокомолекулярный углевод, растворимый в воде; из водных растворов осаждается спиртом. Количество остатков фруктозы, связанных в молекуле инулина гликозидными связями между 1- м и 2- м углеродными атомами, предположительно равно 34. Макромолекулы линейны и оканчиваются α- D- глюкопиранозным остатком. Инулин в больших количествах содержится в подземных органах растений семейства Asteraceae как запасающий полисахарид. Для обнаружения инулина в лекарственном сырье используется реакция Молиша: при нанесении одной капли 20% спиртового раствора α- нафтола и одной капли концентрированной серной кислоты с течением времени появляется розово-фиолетовое окрашивание. Из растений, содержащих инулин, получают D- фруктозу. В настоящее время сырье, богатое инулино, широко используется в составе различных пищевых добавок, применяемых при заболевании диабетом.



Крахмал не является химически индивидуальным веществом. Углеводная часть крахмала состоит из двух полисахаридо: амилозы и амилопектина.

Амилоза представляет собой линейный глюкан, в котором остатки связаны α- глюкозидными связями между 1-м и 4-м углеродными атомами. Амилоза имеет молекулярную массу 32 000- 160 000, легко растворима в воде и дает растворы со сравнительно невысокой вязкостью.

Амилопектин - разветвленный клюкан, в котором остатки глюкозы соединены α- глюкозидными связями не только между 1-м и 4-м, но так же между 1-м и 6-м углеродными атомами. Амилопектин растворяется в воде при нагревании и дает стойкие вязкие растворы. Его молекулярная масса достигает сотен миллионов.

Крахмал подвергается ферментативному и кислотному гидролизу. В качестве промежуточных продуктов при гидролизе крахмала образуются полисахариды разной молекулярной массы- декстрины. В растениях крахмал находится в виде крахмальных зерен разнообразной формы: овальной, сферической, и т.д. размеры зерен колеблются от 0,002 до 0,15 мм. Рост крахмальных зерен происходит путем наложения новых слоев на старые, поэтому они часто имеют слоистую структуру. Характерным свойством крахмала является его способность окрашиваться в синий цвет при добавлении раствора Люголя. В холодной воде крахмал лишь набухает, а при нагревании дает вязкие коллоидные растворы, называемые крахмальным клейстером. Растительным сырьем для производства основных видов крахмала служат зерновки пшеницы, риса, кукурузы, а так же клубни картофеля. Применяют крахмал как наполнитель, а в хирургии- для приготовления неподвижных повязок. Он широко используется в присыпках, мазях, пастах вместе с цинка оксидом, тальком. Внутрь же его применяют как обволакивающее при желудочно-кишечных зоболеваниях.

Камеди - смеси гетерополисахаридов с обязательным участием уроновых кислот. Камеди образуются в результате перерождения клеточных стенок и содержимого клеток сердцевины, сердцевинных лучей и т.д. при этом клетки разрушаются, камеди накапливаются и выступают из естественных трещин или из искусственных надрезов стволов. Они застывают в виде комковатых, ленточных и другой формы образований.

Химический состав камедей очень сложен. По отношению к воде камеди подразделяют на три типа:

1. Арабиновые, хорошо растворимые в воде.

2. Бассориновые, плохо растворимые в воде, но сильно в ней набухающие.

3. Церазиновые, плохо растворимые и мало набухающие в воде.

В формацептической практике камеди используются при приготовлении эмульсий и таблеток.

Слизи - смесь гетеро- и гомополисахаридов. Слизи образуются в результате нормального слизистого перерождения клеточных стенок или клеточного содержимого. При ослизнении клетки не разрушаются и целостность их сохраняется. Слизи – твердые аморфные вещества, хорошо растворимые в воде и нерастворимые в спирте и неполярных растворителях. В медицине слизи используют как противовоспалительные и обволакивающие средства. Кроме того, слизи обладают радиопротекторными и иммунозащитными свойствами.

Пектиновые вещества – высокомолекулярные гетерополисахариды, главным структурным компонентом которых является α- D- галактуроновая кислота. Кроме галактуроновой кислоты в значительно меньших количествах в составе пектиновых веществ присутствуют D- галактоза, L-арабиноза, L- рамноза, и другие нейтральные моносахариды. Пектиновые вещества обычно извлекают из растительного сырья при нагревании раствором фосфорной или другой кислоты; экстракт концентрируют, фильтруют и осаждают пектиновые вещества спиртом. Пектины оказывают противоязвенное действие и являются легким слабительным, а с различными металлами образуют комплексные соединения, которые легко выводятся из организма.

ЛИПИДЫ

Понятие. Жиры и жироподобные вещества, нередко называемые липидами,- этов основном производные высших жирных кислот, спиртов или альдегидов. К простым относят липиды, молекулы которых содержат только остатки жирных кислот либо альдегидов и спиртов, к сложным- содержащие, кроме названных, остатки фосфорной кислоты, моно- или олигосахаридов и др.

По химической структуре большинство растительных жиров представляют собой сложные эфиры трехатомного спирта глицерина и высокомолекулярных жирных кислот- глицериды. В составе растительных масел чаще всего встречаются:

· Из насыщенных кислот- лауриновая (C H COOH), миристиновая (С H COOH), пальмитиновая(C H COOH), стеариновая (С H COOH).

· Из ненасыщенных кислот- олеиновая (C H OHCOOH), рицинолевая (12- оксиолеиновая) (C H OHCOOH),линолевая (C H COOH), линоленовая(C H COOH).

Биологическая роль . Липиды- один из основных компонентов биологичиских мембран клеток. Они также создают энергетический резерв в растениях, являясь запасными питательными веществами. У растений липиды накапливаются главным образом в плодах и семенах.

Физические свойства. Глицериды могут быть твердыми(образованы насыщенными жирными кислотами)- растительные жиры- и жидкими(образованы ненасыщенными кислотами)- растительные жирные масла- веществами. Жиры и жирные масла жирны на ощупь, на бумаге оставляют жирное пятно, не исчезающее при нагревании. Цвет жирных глицеридов может быть белым или желтоватым, реже- оранжево-желтым; жирные масла- прозрачные жидкости. Все глицериды имеют запах слабый, вкус маслянистый. Реакция среды нейтральная. Плотность ниже 1. Глицериды нерастворимы в воде и спирте, хорошо растворимы в неполярных органических расворителях. Они не имеют характерной температуры застывания, плавления и кипения. Глицериды оптически неактивны, за исключением касторового масла, что связано с наличием в нем триглицеролов оксиолеиновой кислоты. Реактив судан III окрашивает жирное масло в оранжевый цвет.

Химические свойства . Глицериды подвергаются гидролизу при участии фермента липазы и повышенной температуры в присутствии воды с образованием глицерина и свободных кислот. При действии щелочей глицериды омыляются с образованием глицерина и калиевых или натриевых солей жирных кислот. Жидкие масла дают реакции насыщения двойных связей. Жиры способны прогоркать, продукты прогоркания обнаруживаются по изменению цвета глицеридов, появлению раздражающего запаха и вкуса, увеличению плотности и растворимости в спирте. Под влиянием кислорода воздуха некоторые жирные масла способны образовывать эластичные пленки.

Качественный и количественный анализ . Подлинность жирных масел определяют по внешнему виду, цвету запаху, вкусу, растворимости, химическим реакциям, которые указаны в нормативных документах на конкретные виды масел. Подлинность и чистоту определяют по физическим и химическим константам. Методы количественного определения жирных масел основаны на их растворимости в неполярных органических растворителях.

Фармакологические свойства . Липиды проявляют слабительное, желчегонное, каппиляроукрепляющее, противоопухлевое, антисклеротическое, антиаритмическое, иммуностимулирующее действие. Они применяются в лечении аллергии, артритов, атеросклероза, болезней верхних дыхательных путей, диабета, желчно- и мочекаменной болезни и других заболеваний. Липиды так же являются источниками ряда жирорастворимых витаминов(A,D,E,F).

Применение в медицине. Жирные масла и жиры входят в состав эмульсий, мазей, пластырей; используются в качестве растворителей для инъекционных растворов камфоры и гормонов. В фармацевтической практике используются жидкие масла- оливковое, миндальное, касторовое, подсолнечное, льняное и масло какао.

ТЕРПЕНОИДЫ

Понятие и классификация . Терпеноиды- обширный класс природных органических соединений с общей формулой(C H), где n ≥ 2. Исходя из теоритического числа единиц изопротена в молекуле, терпеноиды делят на монотерпеноиды, сесквитерпеноиды, дитерпеноиды, тритерпеноиды, тетратерпеноиды и политерпеноиды.

Растительный организм из простых веществ - воды и углекислого газа под действием солнечного света способен синтезировать разнообразные химические соединения, зачастую весьма сложные по строению. Это так называемые первичные метаболиты, необходимые растениям как строительный и энергетический материал. К ним относятся углеводы, белки и липиды.

Первичные метаболиты, как исходное сырье, вовлекаются в сложный биосинтетический процесс, в результате которого возникают новые, существенно различающиеся по химической структуре и свойствам вещества - вторичные метаболиты. Являясь продуктами синтеза живых организмов, каковыми являются растительные клетки, вторичные метаболиты способны оказывать определенное (положительное или отрицательное) воздействие и на многие жизненные процессы человека и животных.

Разумеется, что при использовании растения с лечебной целью далеко не все содержащиеся в нем химические соединения влияют на развитие терапевтического эффекта. В связи с этим среди биологически активных соединений растительного происхождения принято выделять действующие, сопутствующие и балластные вещества.

Действующие вещества - это соединения, обусловливающие терапевтическую ценность данного вида сырья. В большинстве случаев в растениях они являются вторичными метаболитами, реже - первичными. Их можно разделить на две групы.

1. Действующие вещества, обладающие сильно выраженной фармакологической активностью. Они, чаще всего, в высоких дозах токсичны и могут вызывать негативные побочные явления, а эффект проявляется в очень широких пределах лечебных доз. Эта группа, как правило, представлена биогенетически родственными химическими соединениями, относящихся к одному классу. Яркими представителями являются многие алкалоиды и сердечные гликозиды. Лекарственное сырье, содержащее подобные биологически активные вещества, наиболее часто используется для производства промышленных препаратов.

2. Действующие вещества, обладающие более слабой фармакологической активностью. Они нередко представлены в одном растении различными химическими соединениями, относящимися к разным классам. Например, почти каждое растение содержит витамины, флавоноиды, дубильные вещества и др. В этом случае, как правило, достигаемый терапевтический результат является комплексным, зависящим от суммы всех действующих веществ, содержащихся в растительном сырье. Фармакологический результат таких соединений чаще всего проявляется при применении относительно высоких доз и, особенно, при длительном приеме. Побочные эффекты, как и случаи отравления, довольно редки. Из растительного сырья, содержащего эту группу, получают как экстемпоральные лекарственные формы, так и промышленные препараты.


Сопутствующими веществами называют вещества растительного происхождения, обладающие определенной фармакологической активностью, но непосредственно не влияющие на достижение конечного терапевтического результата. Как правило к ним относятся продукты первичного и (или) вторичного синтеза, содержащихся в лекарственном растении наряду с действующими веществами.

Присутствие сопутствующих веществ в сырье может быть желательно, а может быть и не желательно.

В первом случае их роль сводится к ускорению или улучшению эффекта действующих веществ. Например, сапонины, часто встречающиеся в растениях, содержащих сердечные гликозиды, ускоряют всасывание последних в кишечнике, обеспечивая тем самым более быстрый терапевтический эффект; аскорбиновая кислота потенцирует действие флавоноидов, регулирующих сосудистую проницаемость и т.д.

Во втором случае эти вещества могут вызвать негативные явления при лечении. В частности, смолы, сопутствующие антраценпроизводным, вызывают болевые ощущения в кишечнике и тошноту. Дубильные вещества могут препятствовать качественному приготовлению экстемпоральных лекарственных форм. От таких сопутствующих веществ, как правило, стремятся освободиться.

Балластные вещества в растениях представлены преимущественно продуктами первичного синтеза и, наиболее часто, производными углеводов.В достижении терапевтического эффекта их роль не значительна или сводится к нулю.

Следует отметить, что резкой границы между приведенными группами нет, и это деление в какой-то мере условно, поскольку одну и ту же группу веществ иной раз относят к действующим, другой - к сопутствующим, а третий - к балластным (например, клетчатка, крахмал и др.)..

Исходя из принципов химической классификации среди биологически активных веществ лекарственных растений в настоящее время можно выделить следующие, наиболее важные в лечебном плане, группы соединений.

1. Алкалоиды - большая группа природных азотсодержащих соединений основного характера. Часто обладают сильным фармакологическим действием и терапевтические дозы многих алкалоидов близки к токсическим или же связаны с побочными эффектами. По некоторым данным, число выделенных из растений алкалоидов с установленной структурой в настоящее время составляет около 10 000. В то же время в медицинской практике нашло применение только лишь около 80 алкалоидов. Преимущественно они используются в чистом виде для промышленного производства фармпрепаратов, но некоторые алкалоидсодержащие растения применяются и для получения экстемпоральных лекарственных форм.

В связи с чрезвычайно разнообразным химическим строением этой группы биологически активных веществ, фармакологические свойства алкалоидов настолько обширны, что невозможно перечислить их детально. В частности, это гипо- или гипертензивные эффекты, седативное действие на центральную нервную систему, сосудосуживающее или сосудорасширяющее влияние и т. д. Важно помнить, что большинство алкалоидов относится к сильнодействующим, ядовитым и наркотическим средствам, поэтому применение растений, их содержащих, требует внимания, осторожности и согласования с врачом.

2. Терпеноиды - обширная группа органических соединений растительного происхождения, объединяемая общими путями биосинтеза. Исходя из особенностей химической структуры внутри этой группы выделяют:

- эфирные масла - летучие жидкие смеси органических веществ, вырабатываемые растениями и обусловливающие их запах. Число компонентов в составе одного эфирного масла может достигать сотни и более. Соединения, составляющие эфирное масло, могут существовать в свободном виде или в виде гликозидов (т.е. соединений, связанных гликозидной связью с сахарным компонентом). В номенклатуре использующихся с лечебной целью лекарственных растений, эфиромасличные растения занимают самое значительное место. Их применение весьма разнообразно. Можно отметить некоторую закономерность в проявлении фармакологических свойств. Среди растений этой группы выделяются следующие подгруппы: а). растения, обладающие противовоспалительной, антимикробной и противовирусной активностью; б). разжижающие мокроту и обладающие отхаркивающим действием; в). оказывающие спазмолитический и сосудорасширяющий эффекты; г). стимулирующие деятельность органов пищеварения; д). проявляющие аналгезирующий и раздражающий эффекты.

- сердечные гликозиды - соединения со сложной и весьма лабильной химической структурой, состоящей из стероидного скелета, лактонного кольца и углеводной части. Сердечные гликозиды оказывают выраженный кардиотонический эффект - увеличивают силу и уменьшают частоту сердечных сокращений, улучшают тканевой обмен сердечной мышцы. Пока не найдены равноценные синтетические заменители этих уникальных лекарственных веществ, поэтому растения являются единственным источником их получения для медицинских целей. Растительное сырье, содержащее сердечные гликозиды, используется преимущественно для производства промышленных препаратов, но иногда из него готовят настои или настойки. В этом случае следует помнить, что сердечные гликозиды в высоких дозах являются сердечным ядом, и их использование без рекомендации врача абсолютно противопоказано.

- сапонины (стероидные и тритерпеновые) - вещества, обладающие специфическими свойствами: поверхностной активностью и способностью вызывать гемолиз эритроцитов. Сапонинсодержащие растения обладают немногочисленными, но уникальными фармакологическими эффектами. Для растений, содержащих стероидные сапонины, характерно антисклеротическое действие. У тритерпеновых сапонинов более широкий спектр фармакологических эффектов. Они обладают выраженным отхаркивающим действием, усиливая секрецию бронхиальных желез, разжижая мокроту и понижая ее вязкость, имеют тонизирующее и адаптогенное действие. Некоторые из них (например, сапонины солодки) при попадании в организм превращаются в аналоги гормонов коркового слоя надпочечников, оказывая тем самым выраженный противовоспалительный, иммуностимулирующий и гормонсберегающий эффект.

- иридоиды (горькие гликозиды) – вещества гликозидной природы, агликоном которых являются производные циклопентаноидных монотерпенов. Это сравнительно немногочисленная группа. Ее основной фармакологический эффект сводится к рефлекторному или местному усилению деятельности органов пищеварения. При этом повышается аппетит, увеличивается секреция желудочного сока, улучшается желчеотделение, усиливается перистальтика кишечника.

3. Фенольные соединения - вещества ароматической природы, которые содержат одну или несколько гидроксильных групп, связанных с атомами углерода ароматического ядра. Эта группа биологически активных веществ, как и предыдущая, объединяется по биогенетическому принципу и включает в себя:

- простые фенолы, фенолокислоты, фенолоспирты . Ассортимент лекарственного растительного сырья, содержащего эти соединения в качестве основных действующих веществ, весьма не велик. Большинство из них - типичные сопутствующие вещества, обеспечивающие суммарный эффект растительных препаратов. В то же время следует выделить группу лекарственных растений, содержащих фенологликозиды, обладающих выраженным антисептическим и диуретическим действием.

- кумарины и хромоны - соединения, в основе строения которых лежит бензо-a-пирон. Растения, содержащие вещества этой группы, в большинстве своем используются для промышленного производства лекарственных препаратов и обладают спазмолитической, фотосенсибилизирующей, антикоагулянтной и, реже, Р-витаминной активностью.

- флавоноиды - соединения, являющиеся производными флавана или флавона (бензо-g-пирона). Растения, содержащие флавоноиды в качестве действующих веществ, образуют довольно обширную группу, и представлены преимущественно сырьем аптечного ассортимента. Как правило, они сочетают в себе низкую токсичность с достаточно высоким избирательным терапевтическим действием. Прежде всего это выраженная Р-витаминная, спазмолитическая, гипотензивная, желчегонная, кровоостанавливающая и диуретическая активность.

- лигнаны - природные фенольные вещества, производные димеров фенилпропанового ряда. Лигнаны довольно широко распространены в растительном мире и многие из них обладают весьма ценными фармакологическими свойствами - противоопухолевыми, противомикробными, стимулирующими и адаптогенными.

- дубильные вещества - высокомолекулярные растительные многоядерные фенольные соединения, обладающие вяжущим вкусом. Они подразделяются на гидролизуемые (в условиях кислотного или ферментативного гидролиза распадаются на составляющие компоненты) и конденсированные - не поддающиеся гидролизу. Отличительный признак дубильных веществ - высокое удельное содержание фенольных гидроксильных групп. Дубильные вещества содержатся почти во всех широко известных растениях, выполняя роль сопутствующих или балластных веществ. Однако при значительной концентрации дубильных веществ и отсутствии каких-либо других соединений, обладающих высокой фармакологической активностью, дубильные вещества переходят в разряд действующих. Они обладают вяжущим, кровоостанавливающим и антисептическим действием, ограничивают воспалительный процесс, используются как антидот при отравлении алкалоидами и солями тяжелых металлов. Гидролизуемые дубильные вещества обладают более мягким дубящим действием по сравнению с конденсированными, что особенно важно при воздействии на слизистые оболочки.

- антраценпроизводные – соединения, в основе которых лежит ядро антрацена различной степени окисленности. Перечень растений, содержащий эту группу биологически активных веществ в качестве действующих, невелик, а сырье преимущественно обладает слабительным действием, стимулируя перистальтику толстого кишечника: рецепторы слизистой оболочки толстой кишки более чувствительны к антраценам и реагируют на такие их концентрации, на которые не реагируют рецепторы тонкого кишечника.

4. Углеводы - первичные продукты синтеза биологически активных веществ и представляющие собой алифатические полиоксикарбонильные соединения и их многочисленные производные. Непосредственное лечебное действие оказывают растения, содержащие высокомолекулярные полисахариды. К ним, в частности, относятся:

- клетчатка – высокомолекулярный гомополисахарид, построенный в линейную цепь из остатков D-глюкозы, связанных b-1,4-гликозидными связями. Является основой перевязочных материалов. Клетчатка набухает в толстом кишечнике, вызывая раздражение рецепторов слизистых оболочек, стимулируя перистальтику и тем самым оказывая слабительный эффект.

- пектиновые вещества - высокомолекулярные гетерополисахариды, главным структурным компонентом которых является галактуроновая кислота и ее метилированные производные. Пектины обладают кровоостанавливающим, ранозаживляющим, антисклеротическим, гипотензивным и противоязвенным эффектом; снижают токсичность антибиотиков и удлиняют сроки их действия; способствуют выведению из организма радионуклидов и тяжелых металлов - свинца, меди, кобальта и т.д.

- крахмал – высокомолекулярный гомогликан, мономерной единицей которых является только глюкоза. В медицинской практике используется как наполнитель и в качестве присыпок.

- слизи и камеди - гидрофильные соединения, представляющие собой смеси кислых и нейтральных гетерополисахаридов. В медицинской практике слизьсодержащие растения применяют как мягчительные, обволакивающие, противовоспалительные и отхаркивающие средства.

5. Липиды. Эта группа растительных биологически активных веществ представлена преимущественно жидкими маслами (за исключением масла какао) - смесями триглицеридов высокомолекулярных жирных кислот. Растительные жиры обладают ценными свойствами, среди которых можно отметить мягчительное, антисклеротическое, антиоксидантное, слабительное, эпителизирующее и болеутоляющее действие.

6. Витамины - органические вещества различной химической природы, в малых количествах необходимые для нормального функционирования организма. Растениями синтезируются практически все витамины, за исключением витамина А и витаминов группы D, которые образуются в организме животных из растительных предшественников. Те или иные витамины или группа витаминов содержатся в любом растении, но в некоторых их содержание достигает значительной величины. В связи с этим выделяют лекарственные растения, обладающие поливитаминной активностью, а также С-, Р-, А-, К-, U- и F- витаминной активностью.

7. Минеральные элементы - химические элементы, усваиваемые растениями. По содержанию они подразделяются на макроэлементы, микроэлементы и ультрамикроэлементы. Содержание макроэлементов достигает десятых долей процента (Fe, Ca, K, Mg, Na, P, S, Al, Si, Cl). Микроэлементы в растениях содержатся в количествах 10 -2 - 10 -5 % (Mn, B, Sr, Cu, Li, Ba, Br, Ni и др.). Ультрамикроэлементы накапливаются в клетках в концентрации менее 10 -6 % (As, Mo, Co, I, Pb, Ag, Au, Ra и др.). Некоторые растения способны избирательно концентрировать определенные минеральные элементы. Например, морские водоросли - бром и йод; кукуруза – золото; астрагалы - селен; сфагнум – серебро; вересковые и брусничные - марганец и т.д.

Отличительной особенностью минеральных комплексов, содержащихся в растениях, является то, что они представляют собой естественную комбинацию, свойственную живой природе в целом, прошедшую через своеобразный биологический фильтр и вследствие этого отличающуюся наиболее благоприятным для организма соотношением основных компонентов. Существенным преимуществом растений является и то, что микроэлементы в них находятся в органически связанной, т.е. наиболее доступной и усвояемой форме. Активность любого минерального элемента в органическом комплексе во много раз превосходят таковую в неорганических солях.

Минеральные элементы входят в состав или активируют до 300 ферментов. Известны металлоорганические соединения и неферментативного характера, но с высокой биологической активностью, как, например, хлорофилл, купропротеины и др.

Вопрос о целевом использовании микроэлементов, содержащихся в растениях, к настоящему времени остается открытым и недостаточно исследованным, хотя их терапевтическая ценность очень велика, особенно при состояниях, сопровождающихся нарушениями в организме человека микроэлементного равновесия.

Кроме вышеперечисленных групп биологически активных веществ растительного происхождения необходимо отметить тиогликозиды , образующие в процессе гидролиза горчичный спирт (аллилизотиоцианат) и цианогликозиды , соединения, гидролизующиеся с образованием синильной кислоты. Ассортимент официнального сырья весьма ограничен, как ограничена и область его применения.





error: Контент защищен !!