Процесс прохождения звуковой волны через орган слуха. Центральные слуховые пути. Различение высоты звука

Слуховой анализатор воспринимает колебания воздуха и трансформирует механическую энергию этих колебаний в импульсы, которые в коре головного мозга воспринимаются как звуковые ощущения.

Воспринимающая часть слухового анализатора включает - наружное, среднее и внутреннее ухо (рис. 11.8.). Наружное ухо представлена ушной раковиной (звукоуловитель) и наружным слуховым проходом, длина которого составляет 21-27 мм, а диаметр 6-8 мм. Наружное и среднее ухо разделяет барабанная перепонка - мало податливая и слабо растягивающаяся мембрана.

Среднее ухо состоит из цепи соединенных между собой косточек: молоточек, наковальня и стремечко. Рукоятка молоточка прикрепляется к барабанной перепонке, основание стремечка - к овальному окну. Это своеобразный усилитель который в 20 раз усиливает колебания. В среднем ухе, кроме того, имеется две маленькие мышцы, прикрепляющиеся к косточкам. Сокращение этих мышц приводит к уменьшению колебаний. Давление в среднем ухе выравнивается за счет евстахиевой трубы, которая открывается в ротовую полость.

Внутреннее ухо соединено со средним при помощи овального окна, к которому прикрепляется стремечко. Во внутреннем ухе находится рецепторный аппарат двух анализаторов - воспринимающего и слухового (рис. 11.9.). Рецепторный аппарат слуха представлен улиткой . Улитка, длиной 35 мм и имеющая 2,5 завитка, состоит из костной и перепончатой части. Костная часть разделена двумя мембранами: основной и вестибулярной (рейснеровой) на три канала (верхний - вестибулярный, нижний - тимпанический, средний - барабанный). Средняя часть, называется улиточный ход (перепончатый). У верхушки - верхние и нижние каналы связаны геликотремой. Верхние и нижние каналы улитки заполнены перилимфой, средние - эндолимфой. Перилимфа по ионному составу напоминает плазму, эндолимфа - внутриклеточную жидкость (в 100 раз больше ионов К и в 10 раз ионов Nа).

Основная мембрана состоит из слабо натянутых эластических волокон, поэтому может колебаться. На основной мембране - в среднем канале расположены звуковоспринимающие рецепторы - кортиев орган (4 ряда волосковых клеток - 1 внутренний (3,5 тыс. клеток) и 3 наружных - 25-30 тыс. клеток). Сверху - тектореальная мембрана.

Механизмы проведения звуковых колебаний . Звуковые волны пройдя через наружный слуховой проход колеблют барабанную перепонку, последняя приводит в движение косточки и мембрану овального окна. Колеблется перилимфа и к вершине колебания затухают. Колебания перилимфы передаются на вестибулярную мембрану, а последняя начинает колебать эндолимфу и основную мембрану.

В улитке регистрируется: 1) Суммарный потенциал (между кортиевым органом и средним каналом - 150 мВ). Он не связан с проведением звуковых колебаний. Он обусловлен уравнем окислительно-восстановительных процессов. 2) Потенциал действия слухового нерва. В физиологии также известен и третий - микрофонный - эффект заключающий в следующем: если в улитку ввести электроды и соединить с микрофоном, предварительно усилив его, и произносить в ухо кошке различные слова, то микрофон воспроизводит эти же слова. Микрофонный эффект генерируется поверхностью волосковых клеток, т. к. деформация волосков приводит к появлению разности потенциалов. Однако, этот эффект превосходит энергию вызвавших его звуковых колебаний. Отсюда микрофонный потенциал - непростое преобразование механической энергии в электрическую, а связан с обменными процессами в волосковых клетках. Местом возникновения микрофонного потенциала является область корешков волосков волосковых клеток. Звуковые колебания, действующие на внутреннее ухо, накладывают возникающий микрофонный эффект на эндокохлеарный потенциал.


Суммарный потенциал отличается от микрофонного тем, что отражает не форму звуковой волны, а ее огибающую и возникает при действии на ухо высокочастотных звуков (рис. 11.10.).

Потенциал действия слухового нерва генерируется в результате электрического возбуждения, возникающего в волосковых клетках в виде микрофонного эффекта и суммарного потенциала.

Между волосковыми клетками и нервными окончаниями имеются синапсы, при этом имеет место и химический и электрический механизмы передачи.

Механизм передачи звука различной частоты. В течение длительного времени в физиологии господствовала резонаторная теория Гельмгольца : на основной мембране натянуты струны различной длины, подобно арфе они имеют разную частоту колебаний. При действии звука начинает колебаться та часть мембраны, которая настроена в резонанс данной частоте. Колебания натянутых нитей раздражают соответствующие рецепторы. Однако, эта теория критикуется, т. к. струны не натянуты и их колебания в каждый данный момент включают слишком много волокон мембраны.

Заслуживает внимания теория Бекеше . В улитке имеется явление резонанса, однако, резонирующим субстратом являются не волокна основной мембраны, а столб жидкости определенной длины. По данным Бекеше, чем больше частота звука, тем меньше длина колеблющегося столба жидкости. При действии звуков низкой частоты длина колеблющегося столба жидкости увеличивается, захватывая большую часть основной мембраны, причем колеблются не отдельные волокна, а значительная их часть. Каждой высоте тона соответствует определенное количество рецепторов.

В настоящее время наиболее распространенной теорией восприятия звука разной частоты является “теория места ”, согласно которой не исключается участие воспринимающих клеток в анализе слуховых сигналов. Предполагается что волосковые клетки, расположенные на различных участках основной мембраны обладают различной лабильностью, что оказывает влияние на звуковые восприятия, т. е. речь идет о настройке волосковых клеток на звуки разной частоты.

Повреждения в различных участках основной мембраны приводит к ослаблению электрических явлений, возникающих при раздражении звуков разной частоты.

Согласно резонансной теории, различные участки основной пластинки реагируют колебанием своих волокон на звуки разной высоты. Сила звука зависит от величины колебаний звуковых волн, которые воспринимаются барабанной перепонкой. Звук будет тем сильнее, чем больше величина колебаний звуковых волн и соответственно барабанной перепонки, Высота звука зависит от частоты колебаний звуковых волн, Большая частота колебаний в единицу времени будет. восприниматься органом слуха в виде более высоких тонов (тонкие, высокие звуки голоса) Меньшая частота колебаний звуковых волн воспринимается органом слуха в виде низких тонов (басистые, грубые звуки и голоса) .

Восприятие высоты, силы звука и локализации источника звука начинается с попадания звуковых волн в наружное ухо, где они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слуховых косточек среднего уха передаются на мембрану овального окна, что вызывает колебание перилимфы вестибулярной (верхней) лестницы. Эти колебания через геликотрему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха. Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) канала, что приводит в колебательные дви­жения основную мембрану, состоящую из отдельных волокон, натянутых, как струны рояля. При действии звука волокна мембраны приходят в колебательные движения вместе с рецепторны-ми клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с текториальной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Орган слуха состоит из трех отделов - наружного, среднего и внутреннего уха. Наружное и среднее ухо-это вспомогательные сенсорные структуры, обеспечивающие проведение звука к слуховым рецепторам в улитке (внутреннее ухо). Во внутреннем ухе содержатся два типа рецепторов - слуховые (в улитке) и вестибулярные (в структурах вестибулярного аппарата).

Ощущение звука возникает, когда волны сжатия, вызванные колебаниями молекул воздуха в продольном направлении, попадают на слуховые органы. Волны из чередующихся участков
сжатия (высокой плотности) и разрежения (низкой плотности) молекул воздуха распространяются от источника звука (например, камертона или струны) наподобие ряби на поверхности воды. Звук характеризуется двумя основными параметрами -силой и высотой.

Высота звука определяется его частотой, или числом волн за одну секунду. Частота измеряется в герцах (Гц). 1 Гц соответствует одному полному колебанию в секунду. Чем больше частота звука, тем выше этот звук. Человеческое ухо различает звуки в пределах от 20 до 20000 Гц. Наибольшая чувствительность уха приходится на диапазон 1000 - 4000 Гц.

Сила звука пропорциональна амплитуде колебаний звуковой волны и измеряется в логарифмических единицах - децибелах. Один децибел равен 10 lg I/ls, где ls - пороговая сила звука. За стандартную пороговую силу принимается 0,0002 дин/см2 - величина, весьма близкая к пределу слышимости у человека.

Наружное и среднее ухо

Ушная раковина служит как бы рупором, направляющим звук в слуховой канал. Для того чтобы попасть на барабанную перепонку, отделяющую наружное ухо от среднего, звуковые волны должны пройти через этот канал. Колебания барабанной перепонки передаются через заполненную воздухом полость среднего уха по цепи из трех маленьких слуховых косточек: молоточка, наковальни и стремечка. Молоточек соединяется с барабанной перепонкой, а стремечко - с перепонкой овального окна улитки внутреннего уха. Таким образом, колебания барабанной перепонки передаются через среднее ухо на овальное окно по цепи из молоточка, наковальни и стремечка.

Среднее ухо играет роль согласующего устройства, обеспечивающего передачу звука от среды низкой плотности (воздух) к более плотной (жидкость внутреннего уха). Энергия, требующаяся для сообщения какой-либо перепонке колебательных движений, зависит от плотности окружающей эту перепонку среды. Колебания в жидкости внутреннего уха требуют в 130 раз больших затрат энергии, чем в воздухе.

При передаче звуковых волн от барабанной перепонки к овальному окну по цепи слуховых косточек звуковое давление увеличивается в 30 раз. Это связано, прежде всего, с большой разницей в площади барабанной перепонки (0,55 см2) и овального окна (0,032 см2). Звук от большой барабанной перепонки передается по слуховым косточкам к маленькому овальному окну. В результате звуковое давление на единицу площади овального окна по сравнению с барабанной перепонкой возрастает.

Колебания слуховых косточек уменьшаются (гасятся) при сокращении двух мышц среднего уха: мышцы, напрягающей барабанную перепонку, и мышцы стремечка. Эти мышцы присоединяются соответственно к молоточку и стремечку. Их сокращение приводит к увеличению ригидности в цепи слуховых косточек и к уменьшению способности этих косточек проводить звуковые колебания в улитке. Громкий звук вызывает рефлекторное сокращение мышц среднего уха. Благодаря этому рефлексу слуховые рецепторы улитки предохраняются от повреждающего воздействия громких звуков.

Внутреннее ухо

Улитка образована тремя спиральными каналами, заполненными жидкостью, - вестибулярная лестница (лестница преддверия), средняя лестница и барабанная лестница. Вестибулярная и барабанная лестницы соединяются в области дистального конца улитки посредством отверстия -геликотремы, а средняя лестница расположена между ними. Средняя лестница отделена от вестибулярной лестницы тонкой рейснеровой мембраной, а от барабанной - основной (базилярной) мембраной.

Улитка заполнена двумя видами жидкости: в барабанной и вестибулярной лестницах содержится перилимфа, в средней лестнице - эндолим-фа. Состав этих жидкостей различен: в перилимфе много натрия, но мало калия, в эндолимфе мало натрия, но много калия. Из-за этих различий в ионном составе между эндолимфой средней лестницы и перилимфой барабанной и вестибулярной лестниц возникает эндокохлеарный потенциал величиной около +80 мВ. Поскольку потенциал покоя волосковых клеток равен примерно -80 мВ, между эндолимфой и рецепторными клетками создается разность потенциала в 160 мВ, что имеет большое значение для поддержания возбудимости волосковых клеток.

В области проксимального конца вестибулярной лестницы расположено овальное окно. При низкочастотных колебаниях перепонки овального окна в перилимфе вестибулярной лестницы возникают волны давления. Колебания жидкости, порожденные э тими волнами, передаются вдоль вестибулярной лестницы и затем через геликотрему в барабанную лестницу, на проксимальном конце которой находится круглое окно. В результате распространения волн давления в барабанную лестницу колебания перилимфы передаются на круглое окно. При движениях круглого окна, играющего роль демпфирующего устройства, энергия волн давления поглощается.

Кортиев орган

Слуховыми рецепторами являются волосковые клегки. Эти клетки связаны с основной мембраной; в улитке человека их около 20 тыс. С базальной поверхностью каждой волосковой клетки образуют синапсы окончания кохлеарного нерва, образуя вестибулокохлеарный нерв (VIII п.). Слуховой нерв образован волокнами кохлеарного нерва. Волосковые клегки, окончания кохлеарного нерва, покровная и основная мембраны образуют кортиев орган.

Возбуждение рецепторов

При распространении звуковых волн в улитке покровная мембрана смещается, и ее колебания приводят к возбуждению волосковые клетки. Это сопровождается изменением ионной проницаемости и деполяризацией. Возникающий при этом рецепторный потенциал возбуждает окончания кохлеарного нерва.

Различение высоты звука

Колебания основной мембраны зависят от высоты (частоты) звука. Эластичность этой мембраны постепенно возрастает по мере удаления от овального окна. У проксимального конца улитки (в области овального окна) основная мембрана уже (0,04 мм) и жестче, а ближе к геликотреме - шире и более эластична. Поэтому колебательные свойства основной мембраны постепенно изменяются по длине улитки: проксимальные участки более восприимчивы к звукам высокой частоты, а дистальные реагируют лишь на низкие звуки.

Согласно пространственной теории различения высоты звука, основная мембрана действует как анализатор частоты звуковых колебаний. От высоты звука зависит, какой участок основной мембраны будет отвечать на этот звук колебаниями наибольшей амплитуды. Чем звук ниже, тем больше и расстояние от овального окна до участка с максимальной амплитудой колебаний. Вследствие этого та частота, к которой наиболее чувствительна какая-либо волосковая клетка, определяется ее расположением клетки, реагирующие преимущественно на высокие тона, локализуются на узкой, туго натянутой основной мембране близ овального окна; рецепторы же, воспринимающие низкие звуки, расположены на более широких и менее туго натянутых дистальных участках основной мембраны.

Информация о высоте низких звуков кодируется также параметрами разрядов в волокнах кохлеарного нерва; согласно «залповой теории», частота нервных импульсов соответствует частоте звуковых колебаний. Частота потенциалов действия в волокнах кохлеарного нерва, реагирующих на звук ниже 2000 Гц, близка к частоте этих звуков; т.к. в волокне, возбуждающемся при действии тона в 200 Гц, возникает 200 импульсов в 1 с.

Центральные слуховые пути

Волокна кохлеарного нерва идут в составе вестибуло-кохлеарного нерва к продолговатому мозгу и заканчиваются в его кохлеарном ядре. От этого ядра импульсы передаются в слуховую кору по цепи вставочных нейронов слуховой системы, расположенных в продолговатом мозгу (кох-леарные ядра и ядра верхних олив), в среднем мозгу (нижнее двухолмие) и таламусе (медиальное коленчатое тело). «Конечный пункт назначения» слуховых каналов - это дорсолатеральный край височной доли, где расположена первичная слуховая область. Эту область в виде полосы окружает ассоциативная слуховая зона.

Слуховая кора отвечает за распознавание сложных звуков. Здесь соотносятся их частота и сила. В ассоциативной слуховой области интерпретируется смысл услышанных звуков. Нейроны нижележащих отделов-средней части оливы, нижнего двухолмия и медиального коленчатого тела осуществляют и (влечение и переработку информации о высаге и локализации звука.

Вестибулярная система

Лабиринт внутреннего уха, содержащий слуховые рецепторы и рецепторы равновесия, расположен в пределах височной кости и образован плоскостей. Степень смещения купулы и, следовательно, частота импульсации в вестибулярном нерве, иннервирующем волосковые клетки, зависит от величины ускорения.

Центральные вестибулярные пути

Волосковые клетки вестибулярного аппарата иннервируются волокнами вестибулярного нерва. Эти волокна идут в составе вестибулокохле-арного нерва к продолговатому мозгу, где и заканчиваются в вестибулярных ядрах. Отростки нейронов этих ядер идут к мозжечку, ретикулярной формации и спинному мозгу - двигательным центрам, управляющим положением тела при движениях благодаря информации от вестибулярного аппарата, проприорецепторов шеи и органов зрения.

Поступление вестибулярных сигналов к зрительным центрам имеет первостепенное значение для важного глазодвигательного рефлекса - нистагма. Благодаря нистагму взор при движениях головы фиксируется на неподвижном предмете. Во время вращения головы глаза медленно поворачиваются в обратную сторону, и поэтому взор фиксирован на определенной точке. Если угол вращения головы больше, чем тот, на который могут повернуться глаза, то они быстро перемещаются в направлении врашения и взор фиксируется на новой точке. Это быстрое движение и есть нистагм. При повороте головы глаза попеременно совершают медленные движения в направлении поворота и быстрые в противоположном настроении.

Функция органа слуха базируется на двух принципиально различающихся процессах — механоакустическом, определяемом как механизм звукопроведения , и нейрональном, определяемом как механизм звуковосприятия . Первый основан на ряде акустических закономерностей, второй — на процессах рецепции и трансформации механической энергии звуковых колебаний в биоэлектрические импульсы и их трансмиссии по нервным проводникам к слуховым центрам и корковым слуховым ядрам. Орган слуха получил название слухового, или звукового, анализатора, в основе функции которого лежат анализ и синтез невербальной и вербальной звуковой информации, содержащей природные и искусственные звуки в окружающей среде и речевые символы — слова, отражающие материальный мир и мыслительную деятельность человека. Слух как функция звукового анализатораважнейший фактор в интеллектуальном и социальном развитии личности человека, ибо восприятие звука является основой его языкового развития и всей его сознательной деятельности.

Адекватный раздражитель звукового анализатора

Под адекватным раздражителем звукового анализатора понимают энергию слышимого диапазона звуковых частот (от 16 до 20 000 Гц), носителем которых являются звуковые волны. Скорость распространения звуковых волн в сухом воздухе составляет 330 м/с, в воде — 1430, в металлах — 4000-7000 м/с. Особенность звукового ощущения заключается в том, что оно экстраполируется во внешнюю среду в направлении источника звука, это определяет одно из основных свойств звукового анализатора — ототопику , т. е. способность пространственного различения локализации источника звука.

Основными характеристиками звуковых колебаний являются их спектральный состав и энергия . Спектр звука бывает сплошным , когда энергия звуковых колебаний равномерно распределена по составляющим его частотам, и линейчатым , когда звук состоит из совокупности дискретных (прерывистых) частотных составляющих. Субъективно звук со сплошным спектром воспринимается как шум без определенной тональной окраски, например как шелест листвы или «белый» шум аудиометра. Линейчатым спектром с кратными частотами обладают звуки, издаваемые музыкальными инструментами и человеческим голосом. В таких звуках доминирует основная частота , которая определяет высоту звука (тон), а набор гармонических составляющих (обертонов) определяет тембр звука .

Энергетической характеристикой звуковых колебаний является единица интенсивности звука, которая определяется как энергия, переносимая звуковой волной через единицу поверхности в единицу времени . Интенсивность звука зависит от амплитуды звукового давления , а также от свойств самой среды, в которой распространяется звук. Под звуковым давлением понимают давление, возникающее при прохождении звуковой волны в жидкой или газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разряжения частиц среды.

Единицей измерения звукового давления в системе СИ является ньютон на 1 м 2 . В некоторых случаях (например, в физиологической акустике и клинической аудиометрии) для характеристики звука применяют понятие уровень звукового давления , выражаемый в децибелах (дБ), как отношение величины данного звукового давления Р к сенсорному пороговому значению звукового давления Ро = 2,10 -5 Н/м 2 . При этом число децибел N = 20lg (Р/Ро ). В воздушной среде звуковое давление в пределах слышимого диапазона частот меняется в пределах от 10 -5 Н/м 2 вблизи порога слышимости до 10 3 Н/м 2 при самых громких звуках, например при шуме, производимом реактивным двигателем. С интенсивностью звука связана субъективная характеристика слуха — громкость звука и многие другие качественные характеристики слухового восприятия.

Носителем звуковой энергии является звуковая волна. Под звуковыми волнами понимают циклические изменения состояния среды или ее возмущения, обусловленные упругостью данной среды, распространяющиеся в этой среде и несущие с собой механическую энергию. Пространство, в котором распространяются звуковые волны, называется звуковым полем.

Основными характеристиками звуковых волн являются длина волны, ее период, амплитуда и скорость распространения. Со звуковыми волнами связаны понятия излучения звука и его распространения. Для излучения звуковых волн необходимо в среде, в которой они распространяются, произвести некоторое возмущение за счет внешнего источника энергии, т. е. источника звука. Распространение звуковой волны характеризуется в первую очередь скоростью звука, которая, в свою очередь, определяется упругостью среды, т. е. степенью ее сжимаемости, и плотностью.

Распространяющиеся в среде звуковые волны обладают свойством затухания , т. е. снижением амплитуды. Степень затухания звука зависит от его частоты и упругости среды, в которой он распространяется. Чем ниже частота, тем меньше степень затухания, тем дальше распространяется звук. Поглощение звука средой заметно возрастает с увеличением его частоты. Поэтому ультразвук, особенно высокочастотный, и гиперзвук распространяются на очень малые расстояния, ограниченные несколькими сантиметрами.

Законы распространения звуковой энергии присущи механизму звукопроведения в органе слуха. Однако, чтобы звук начал распространяться по цепи слуховых косточек, необходимо, чтобы барабанная перепонка пришла в колебательное движение. Колебания последней возникают в результате ее способности резонировать , т. е. поглощать энергию падающих на нее звуковых волн.

Резонанс — это акустическое явление, в результате которого падающие на какое-либо тело звуковые волны вызывают вынужденные колебания этого тела с частотой приходящих волн. Чем ближе собственная частота колебаний облучаемого объекта к частоте падающих волн, тем больше звуковой энергии этот объект поглощает, тем выше становится амплитуда его вынужденных колебаний, в результате чего этот объект сам начинает издавать собственный звук с частотой, равной частоте падающего звука. Барабанная перепонка благодаря своим акустическим свойствам обладает способностью резонировать на широкий спектр звуковых частот практически с одинаковой амплитудой. Такой тип резонирования называется тупым резонансом .

Физиология звукопроводящей системы

Анатомическими элементами звукопроводящей системы являются ушная раковина, наружный слуховой проход, барабанная перепонка, цепь слуховых косточек, мышцы барабанной полости, структуры преддверия и улитки (перилимфа, эндолимфа, рейснерова, покровная и базилярная мембраны, волоски чувствительных клеток, вторичная барабанная перепонка (мембрана окна улитки). На рис. 1 представлена общая схема системы звукопроведения.

Рис. 1. Общая схема системы звукопроведения. Стрелками показано направление звуковой волны: 1 — наружный слуховой проход; 2 — надбарабанное пространство; 3 — наковальня; 4 — стремя; 5 — головка молоточка; 6, 10 — лестница преддверия; 7, 9 — улитковый проток; 8 — улитковая часть преддверно-улиткового нерва; 11 — барабанная лестница; 12 — слуховая труба; 13 — окно улитки, прикрытое вторичной барабанной перепонкой; 14 — окно преддверия, с подножной пластинкой стремени

Каждому из этих элементов свойственны специфические функции, которые в совокупности обеспечивают процесс первичной обработки звукового сигнала — от его «поглощения» барабанной перепонкой до разложения на частоты структурами улитки и подготовки его к рецепции. Изъятие из процесса звукопроведения любого из этих элементов или повреждение какого-либо из них приводит к нарушению передачи звуковой энергии, проявляющемуся явлением кондуктивной тугоухости .

Ушная раковина человека сохранила в редуцированном виде некоторые полезные акустические функции. Так, интенсивность звука на уровне наружного отверстия слухового прохода на 3-5 дБ выше, чем в свободном звуковом поле. Определенную роль ушные раковины играют в реализации функции ототопики и бинаурального слуха. Ушные раковины играют также и защитную роль. Благодаря особой конфигурации и рельефу при обдувании их воздушным потоком образуются разбегающиеся вихревые потоки, препятствующие попаданию в слуховой проход воздуха и пылевых частиц.

Функциональное значение наружного слухового прохода следует рассматривать в двух аспектах — клинико-физиологическом и физиолого-акустическом. Первый определяется тем, что в коже перепончатой части наружного слухового прохода имеются волосяные луковицы, сальные и потовые железы, а также специальные железы, вырабатывающие ушную серу. Указанные образования играют трофическую и защитную роль, препятствуя проникновению в наружный слуховой проход инородных тел, насекомых, пылевых частиц. Ушная сера , как правило, выделяется в небольших количествах и является естественной смазкой для стенок наружного слухового прохода. Будучи в «свежем» состоянии липкой, она способствует прилипанию к стенкам перепончато-хрящевой части наружного слухового прохода пылевых частиц. Высыхая, она во время акта жевания фрагментируется под влиянием движений в височно-нижнечелюстном суставе и вместе со слущивающимися частицами рогового слоя кожного покрова и прилипшими к ней посторонними включениями выделяется наружу. Ушная сера обладает бактерицидным свойством, в результате чего на коже наружного слухового прохода и барабанной перепонке не обнаруживается микроорганизмов. Длина и изогнутость наружного слухового прохода способствуют защите барабанной перепонки от прямого повреждения инородным телом.

Функциональный (физиолого-акустический) аспект характеризуется ролью, которую играет наружный слуховой проход в проведении звука к барабанной перепонке. На этот процесс влияет не диаметр имеющегося или возникающего в результате патологического процесса сужения слухового прохода, а протяженность этого сужения. Так, при длинных узких рубцовых стриктурах потеря слуха на разных частотах может достигать 10-15 дБ.

Барабанная перепонка является приемником-резонатором звуковых колебаний, обладающим, как уже было отмечено выше, свойством резонировать в широком диапазоне частот без существенных энергетических потерь. Колебания барабанной перепонки передаются рукоятке молоточка, далее — наковальне и стремени. Колебания подножной пластинки стремени передаются перилимфе вестибулярной лестницы, что вызывает колебания основной и покровной мембран улитки. Их колебания передаются волосковому аппарату слуховых рецепторных клеток, в которых происходит трансформация механической энергии в нервные импульсы. Колебания перилимфы в вестибулярной лестнице передаются через вершину улитки к перилимфе барабанной лестницы и далее приводят в колебание вторичную барабанную перепонку окна улитки, подвижность которой обеспечивает протекание колебательного процесса в улитке и защищает рецепторные клетки от чрезмерного механического воздействия при громких звуках.

Слуховые косточки объединены в сложную рычажную систему, обеспечивающую повышение силы звуковых колебаний, необходимое для преодоления инерции покоя перилимфы и эндолимфы улитки и силы трения перилимфы в протоках улитки. Роль слуховых косточек заключается также и в том, что они путем непосредственной передачи жидким средам улитки энергии звука предотвращают отражение звуковой волны от перилимфы в области вестибулярного окна.

Подвижность слуховых косточек обеспечивается тремя суставами, два из которых (наковальне-молоточковый и наковальне-стременной ) устроены типичным образом. Третье сочленение (подножная пластинка стремени в окне преддверия) — это лишь сустав по функции, на самом деле это сложно устроенная «заслонка», выполняющая двоякую роль: а) обеспечение подвижности стремени, необходимой для передачи звуковой энергии структурам улитки; б) герметизация ушного лабиринта в области вестибулярного (овального) окна. Элементом, обеспечивающим эти функции, является кольцевая соединительнотканная связка.

Мышцы барабанной полости (мышца, натягивающая барабанную перепонку, и стременная мышца) выполняют двойную функцию — защитную в отношении сильных звуков и адаптационную при необходимости адаптации звукопроводящей системы к слабым звукам. Они иннервируются двигательными и симпатическими нервами, что при некоторых заболеваниях (миастения, рассеянный склероз, различного рода вегетативные нарушения) нередко отражается на состоянии этих мышц и может проявляться не всегда идентифицируемыми нарушениями слуха.

Известно, что мышцы барабанной полости рефлекторно сокращаются в ответ на звуковое раздражение. Этот рефлекс исходит из рецепторов улитки. Если воздействовать звуком на одно ухо, то в другом ухе возникает содружественное сокращение мышц барабанной полости. Эта реакция получила название акустического рефлекса и используется в некоторых методиках исследования слуха.

Различают три вида звукопроведения: воздушный, тканевый и тубарный (т. е. посредством слуховой трубы). Воздушный тип — это естественное звукопроведение, обусловленное поступлением звука к волосковым клеткам спирального органа из воздушной среды посредством ушной раковины, барабанной перепонки и всей остальной системы звукопроведения. Тканевое , или костное , звукопроведение реализуется в результате проникновения звуковой энергии к подвижным звукопроводящим элементам улитки через ткани головы. Примером реализации костного звукопроведения может служить методика камертонального исследования слуха, при которой рукоятка звучащего камертона прижимается к сосцевидному отростку, темени или другой части головы.

Различают компрессионный и инерционный механизм тканевого звукопроведения. При компрессионном типе возникает сжатие и разряжение жидких сред улитки, что вызывает раздражение волосковых клеток. При инерционном типе элементы звукопроводящей системы, благодаря силам инерции, развиваемым их массой, отстают в своих колебаниях от остальных тканей черепа, в результате чего возникают колебательные движения в жидких средах улитки.

К функциям внутриулиткового звукопроведения относится не только дальнейшая передача звуковой энергии к волосковым клеткам, но и первичный спектральный анализ звуковых частот, и распределение их по соответствующим сенсорным элементам , находящимся на базилярной мембране. При этом распределении соблюдается своеобразный акустико-топический принцип «кабельной» передачи нервного сигнала к высшим слуховым центрам, позволяющий осуществлять высший анализ и синтез информации, содержащейся в звуковых сообщениях.

Слуховая рецепция

Под слуховой рецепцией понимают трансформацию механической энергии звуковых колебаний в электрофизиологические нервные импульсы, являющиеся закодированным выражением адекватного раздражителя звукового анализатора. Рецепторы спирального органа и другие элементы улитки служат генератором биотоков, именуемых улитковыми потенциалами . Существует несколько типов этих потенциалов: токи покоя, токи действия, микрофонный потенциал, суммационный потенциал.

Токи покоя регистрируются в отсутствие звукового сигнала и делятся на внутриклеточный и эндолимфатический потенциалы. Внутриклеточный потенциал регистрируется в нервных волокнах, в волосковых и опорных клетках, в структурах базилярной и рейснеровой (ретикулярной) мембран. Эндолимфатический потенциал регистрируется в эндолимфе улиткового протока.

Токи действия — это интерферированные пики биоэлектрических импульсов, генерируемые только волокнами слухового нерва в ответ на звуковое воздействие. Информация, содержащаяся в токах действия, находится в прямой пространственной зависимости от места раздражаемых на основной мембране нейронов (теории слуха Гельмгольца, Бекеши, Дэвиса и др.). Волокна слухового нерва группируются по каналам, т. е. по признаку их частотной пропускной способности. Каждый канал способен передавать только сигнал определенной частоты; таким образом, если в данный момент на улитку действуют низкие звуки, то в процессе передачи информации участвуют только «низкочастотные» волокна, а высокочастотные в это время находятся в состоянии покоя, т. е. в них регистрируется только спонтанная активность. При раздражении улитки длительным однотонным звуком частота разрядов в отдельных волокнах уменьшается, что связано с феноменом адаптации или утомлением.

Микрофонный эффект улитки является результатом ответа на звуковое воздействие только наружных волосковых клеток. Действие ототоксических веществ и гипоксия приводят к угнетению или исчезновению микрофонного эффекта улитки. Однако в метаболизме этих клеток присутствует и анаэробный компонент, поскольку микрофонный эффект сохраняется на протяжении нескольких часов после смерти животного.

Суммационный потенциал обязан своим происхождением реакции на звук внутренних волосковых клеток. При нормальном гомеостатическом состоянии улитки суммационный потенциал, регистрируемый в улитковом протоке, сохраняет оптимальный отрицательный знак, однако незначительная гипоксия, действие хинина, стрептомицина и ряда других факторов, нарушающих гомеостаз внутренних сред улитки, нарушают соотношение величин и знаков улитковых потенциалов, при котором суммационный потенциал становится положительным.

К концу 50-х гг. XX в. было установлено, что в ответ на звуковое воздействие в различных структурах улитки возникают определенные биопотенциалы, которые дают начало сложному процессу восприятия звуков; при этом акционные потенциалы (токи действия) возникают в рецепторных клетках спирального органа. В клиническом отношении представляется весьма важным факт высокой чувствительности этих клеток к дефициту кислорода, изменению уровня углекислоты и сахара в жидких средах улитки, нарушению ионного равновесия. Указанные изменения могут приводить к парабиотическим обратимым или необратимым патоморфологическим изменениям рецепторного аппарата улитки и к соответствующим нарушениям слуховой функции.

Отоакустическая эмиссия . Рецепторные клетки спирального органа помимо своей основной функции обладают еще одним удивительным свойством. В покое или при действии звука они приходят в состояние высокочастотной вибрации, в результате чего образуется кинетическая энергия, распространяющаяся как волновой процесс через ткани внутреннего и среднего уха и поглощающаяся барабанной перепонкой. Последняя под влиянием этой энергии начинает излучать наподобие диффузора громкоговорителя очень слабый звук в полосе 500-4000 Гц. Отоакустическая эмиссия является не процессом синаптического (нервного) происхождения, а результатом механических колебаний волосковых клеток спирального органа.

Психофизиология слуха

Психофизиология слуха рассматривает две основные группы проблем: а) измерение порога ощущения , под которым понимают минимальный предел чувствительности сенсорной системы человека; б) построение психофизических шкал , отражающих математическую зависимость или отношение в системе «стимул/ реакция» при различных количественных значениях ее компонентов.

Существуют две формы порога ощущения — нижний абсолютный порог ощущения и верхний абсолютный порог ощущения . Под первым понимают минимальную величину стимула, вызывающего ответную реакцию, при которой впервые возникает осознанное ощущение данной модальности (качества) раздражителя (в нашем случае — звука). Под вторым подразумевают величину раздражителя, при которой ощущение данной модальности раздражителя исчезает или качественно изменяется . Например, мощный звук вызывает искаженное восприятие его тональности или даже экстраполируется в область болевого ощущения («порог боли»).

Величина порога ощущения зависит от того, при какой степени адаптации слуха он измерен. При адаптации к тишине порог понижается, при адаптации к определенному шуму — повышается.

Подпороговыми стимулами называются те, величина которых не вызывает адекватного ощущения и не формирует чувственного восприятия. Однако, по некоторым данным, подпороговые стимулы при достаточно длительном их действии (минуты и часы) могут вызывать «спонтанные реакции» типа беспричинных воспоминаний, импульсивных решений, внезапных озарений.

С порогом ощущения связаны так называемые пороги различения : дифференциальный порог интенсивности (силы) (ДПИ или ДПС) и дифференциальный порог качества или частоты (ДПЧ). Оба этих порога измеряются как при последовательном , так и при одновременном предъявлении стимулов. При последовательном предъявлении стимулов порог различения может быть установлен в том случае, если сравниваемые интенсивности и тональности звука различаются не менее чем на 10%. Пороги одновременного различения, как правило, устанавливаются при пороговом обнаружении полезного (тестирующего) звука на фоне помехи (шумовой, речевой, гетеромодальной). Метод определения порогов одновременного различения применяют для исследования помехоустойчивости звукового анализатора.

В психофизике слуха рассматриваются также пороги пространства , местоположения и времени . Взаимодействие ощущений пространства и времени дает интегральное чувство движения . Чувство движения основано на взаимодействии зрительного, вестибулярного и звукового анализаторов. Порог местоположения определяется пространственно-временной дискретностью возбуждаемых рецепторных элементов. Так, на базальной мембране звук в 1000 Гц отображается примерно в области ее средней части, а звук 1002 Гц сдвинут в сторону основного завитка настолько, что между участками этих частот находится одна невозбужденная клетка, для которой «не нашлось» соответствующей частоты. Следовательно, теоретически порог звукового местоположения идентичен порогу различения частоты и составляет 0,2% в частотном измерении. Этот механизм обеспечивает экстраполированный в пространство порог ототопики в горизонтальной плоскости в 2-3-5°, в вертикальной плоскости этот порог в несколько раз выше.

Психофизические законы восприятия звука формируют психофизиологические функции звукового анализатора. Под психофизиологическими функциями любого органа чувств понимают процесс возникновения ощущения, специфического для данной рецепторной системы при действии на нее адекватного раздражителя. В основе психофизиологических методов лежит регистрация субъективного ответа человека на тот или иной раздражитель.

Субъективные реакции органа слуха делятся на две большие группы — спонтанные и вызванные . Первые по своему качеству приближаются к ощущениям, вызванным реальным звуком, хотя и возникают «внутри» системы, чаще всего при утомлении звукового анализатора, интоксикациях, различных местных и общих заболеваниях. Вызванные ощущения обусловлены в первую очередь действием адекватного раздражителя в заданных физиологических пределах. Однако они могут быть спровоцированы внешними патогенными факторами (акустическая или механическая травма уха или слуховых центров), тогда эти ощущения по своей сути приближаются к спонтанным.

Звуки делятся на информационные и индифферентные . Нередко вторые служат помехой для первых, поэтому в слуховой системе существует, с одной стороны, механизм селекции полезной информации, с другой — механизм подавления помех. Вместе они обеспечивают одну из важнейших физиологических функций звукового анализатора — помехоустойчивость .

В клинических исследованиях используется лишь небольшая часть психофизиологических методов исследования слуховой функции, в основе которых лежат лишь три: а) восприятие интенсивности (силы) звука, отражающееся в субъективном ощущении громкости и в дифференцировке звуков по силе; б) восприятие частоты звука, отражающееся в субъективном ощущении тона и тембра звука, а также и в дифференцировке звуков по тональности; в) восприятие пространственной локализации источника звука, отражающееся в функции пространственного слуха (ототопика). Все указанные функции в естественных условиях обитания человека (и животных) взаимодействуют, изменяя и оптимизируя процесс восприятия звуковой информации.

Психофизиологические показатели функции слуха, как и любого другого органа чувств, основываются на одной из важнейших функций сложных биологических систем — адаптации .

Адаптация — это биологический механизм, при помощи которого организм или отдельные его системы приспосабливаются к энергетическому уровню действующих на них внешних или внутренних раздражителей для адекватного функционирования в процессе своей жизнедеятельности . Процесс адаптации органа слуха может реализовываться в двух направлениях: повышение чувствительности при слабых звуках или их отсутствии и понижение чувствительности при чрезмерно сильных звуках . Повышение чувствительности органа слуха в тишине называют физиологической адаптацией. Восстановление чувствительности после ее снижения, возникающего под влиянием длительно действующего шума, называют обратной адаптацией. Время, в течение которого чувствительность органа слуха возвращается к исходному, более высокому уровню, называют временем обратной адаптации (BOA).

Глубина адаптация органа слуха к звуковому воздействию зависит от интенсивности, частоты и времени действия звука, а также от времени тестирования адаптации и соотношения частот воздействующего и тестирующего звуков. Степень слуховой адаптации оценивают по величине потери слуха над порогом и по BOA.

Маскировка — психофизиологический феномен, основанный на взаимодействии тестирующего и маскирующего звуков . Сущность маскировки заключается в том, что при одновременном восприятии двух звуков разной частоты более интенсивный (более громкий) звук будет маскировать более слабый. В объяснении этого феномена конкурируют две теории. Одна из них отдает предпочтение нейрональному механизму слуховых центров, находя подтверждение в том, что при воздействии шума на одно ухо наблюдается повышение порога чувствительности на другое ухо. Другая точка зрения основана на особенностях биомеханических процессов, происходящих на базилярной мембране, а именно при моноауральной маскировке, когда тестирующий и маскирующий звуки подаются в одно ухо, более низкие звуки маскируют более высокие звуки. Этот феномен объясняют тем, что «бегущая волна», распространяющаяся по базилярной мембране от низких звуков к вершине улитки, поглощает аналогичные волны, образующиеся от более высоких частот в нижних участках базилярной мембраны, и лишает таким образом способности последнюю резонировать на высокие частоты. Вероятно, оба указанных механизма имеют место. Рассмотренные физиологические функции органа слуха лежат в основе всех существующих методов его исследования.

Пространственное восприятие звука

Пространственное восприятие звука (ототопика по В. И. Воячеку) является одной из психофизиологических функций органа слуха, благодаря которой животные и человек обладают способностью определять направление и пространственное положение источника звука. Основу этой функции составляет двуушный (бинауральный) слух. Лица с выключенным одним ухом не способны по звуку ориентироваться в пространстве и определять направление источника звука. В клинике ототопика имеет значение при дифференциальной диагностике периферических и центральных поражений органа слуха. При поражении полушарий головного мозга возникают различные нарушения ототопики. В горизонтальной плоскости функция ототопики осуществляется с большей точностью, чем в вертикальной плоскости, что подтверждает теорию о ведущей роли в этой функции бинаурального слуха.

Теории слуха

Вышеперечисленные психофизиологические свойства звукового анализатора в той или иной степени объяснимы рядом теорий слуха, разработанных в конце XIX — начале XX в.

Резонансная теория Гельмгольца объясняет возникновение тонального слуха явлением резонирования так называемых струн основной перепонки на различные частоты: на высокие звуки резонируют короткие волокна основной мембраны, расположенные в нижнем завитке улитки, на средние частоты резонируют волокна, расположенные в среднем завитке улитки, и на низкие частоты — в верхнем завитке, где расположены наиболее длинные и расслабленные волокна.

Теория бегущей волны Бекеши основана на гидростатических процессах в улитке, обусловливающих при каждом колебании подножной пластинки стремени деформацию основной мембраны в виде волны, бегущей по направлению к вершине улитки. При низких частотах бегущая волна достигает участка основной мембраны, находящегося в верхушке улитки, где расположены длинные «струны», при высоких частотах волны вызывают изгиб основной мембраны в основном завитке, где расположены короткие «струны».

Теория П. П. Лазарева объясняет пространственное восприятие отдельных частот вдоль основной мембраны неодинаковой чувствительностью волосковых клеток спирального органа к разным частотам. Эта теория нашла свое подтверждение в трудах К. С. Равдоника и Д. И. Насонова, согласно которым живые клетки организма независимо от их принадлежности реагируют биохимическими изменениями на облучение звуком.

Теории о роли основной мембраны в пространственном различении звуковых частот нашли подтверждение в исследованиях с условными рефлексами в лаборатории И. П. Павлова. В этих исследованиях вырабатывался условный пищевой рефлекс на разные частоты, который исчезал после разрушения разных участков основной мембраны, ответственных за восприятие тех или иных звуков. В. Ф. Ундриц исследовал биотоки улитки, которые исчезали при разрушении различных участков основной мембраны.

Оториноларингология. В.И. Бабияк, М.И. Говорун, Я.А. Накатис, А.Н. Пащинин

РОСЖЕЛДОР

Сибирский государственный университет

путей сообщения.

Кафедра: «Безопасность жизнедеятельности».

Дисциплина: «Физиология человека».

Курсовая работа.

Тема: «Физиология слуха».

Вариант № 9.

Выполнил: студент Проверил: доцент

гр. БТП-311 Рублев М. Г.

Осташев В. А.

Новосибирск 2006

Введение.

Наш мир наполнен звуками, самыми разнообразными.

всё это мы слышим, все эти звуки воспринимаются нашим ухом. В ухе звук превращается в «пулемётную очередь»

нервных импульсов, которые по слуховому нерву передаются в мозг.

Звук, или звуковая волна – это чередующиеся разряжения и сгущения воздуха, распространяющиеся во все стороны от колеблющегося тела. Такие колебания воздуха с частотой от 20 до 20000 в секунду мы слышим.

20000 колебаний в секунду – это самый высокий звук самого маленького инструмента в оркестре – флейты-пикколо, а 24 колебания – звук самой низкой струны – контрабаса.

О том, что звук «влетает в одно ухо, а вылетает в другое» - абсурд. Оба уха выполняют одну и ту же работу, но друг с другом не сообщаются.

Например: звон часов «влетел» в ухо. Ему предстоит мгновенное, но довольно сложное путешествие к рецепторам, то есть к тем клеткам, в которых при действии звуковых волн рождается звуковой сигнал. «Влетев» в ухо, звон ударится в барабанную перепонку.

Перепонка на конце слухового хода натянута сравнительно туго и закрывает проход наглухо. Звон, ударяя в барабанную перепонку, заставляет ее колебаться, вибрировать. Чем сильнее звук, тем сильнее колеблется перепонка.

Человеческое ухо – уникальный по чувствительности слуховой прибор.

Цели и задачи данной курсовой работы состоят в том, чтобы ознакомить человека с органами чувств – слухом.

Рассказать о строении, функциях уха, а также как сохранить слух, как бороться с заболеваниями органа слуха.

Также о разных вредных факторах на производстве, которые могут повредить слух, и о мерах защиты от таких факторов, так как различные заболевания органа слуха могут привести к более тяжелым последствиям – потере слуха и болезни всего организма человека.

I. Значение знаний по физиологии слуха для инженеров по технике безопасности.

Физиология – наука, изучающая функции целостного организма, отдельных систем и органов чувств. Одним из органов чувств является слух. Инженер по технике безопасности обязан знать физиологию слуха, так как на своем предприятии по долгу службы он соприкасается с профессиональным отбором лиц, определяя их годность к тому или иному виду труда, к той или иной профессии.

На основании данных о строении и функции верхних дыхательных путей и уха решается вопрос, в каком виде производства человек может работать, а в каком нет.

Рассмотрим примеры нескольких специальностей.

Хороший слух необходим лицам для контроля работы часовых механизмов, при испытании моторов и различной техники. Также хороший слух необходим врачам, водителям различного вида транспорта – наземного, железнодорожного, воздушного, водного.

Полностью зависит от состояния слуховой функции работа связистов. Радиотелеграфисты, обслуживающие приборы радиосвязи и гидроакустики, занимающиеся выслушиванием подводных звуков или шумоскопией.

Они должны обладать кроме слуховой чувствительности, еще и высоким восприятием разности частоты тона. Радиотелеграфисты должны иметь ритмический слух и память на ритм. Хорошей ритмической чувствительностью считается безошибочное различие всех сигналов или не более трех ошибок. Неудовлетворительной – если различено сигналов меньше половины.

При профессиональном отборе лётчиков, парашютистов, моряков, подводников очень важно определять барофункцию уха и околоносовых пазух.

Барофункция – это способность реагировать на колебания давления внешней среды. А также иметь бинауральный слух, то есть обладать пространственным слухом и определять положение источника звука в пространстве. Это свойство основано на наличии двух симметричных половин слухового анализатора.

Для плодотворной и безаварийной работы, согласно ПТЭ и ПТБ все лица вышеуказанных специальностей должны проходить медицинскую комиссию для определения трудоспособности на данном участке, а также для охраны труда и здоровья.

II . Анатомия органов слуха.

Органы слуха разделены на три отдела:

1. Наружное ухо. В наружном ухе располагаются наружный слуховой проход и ушная раковина с мышцами и связками.

2. Среднее ухо. В среднем ухе находится барабанная перепонка, сосцевидные придатки и слуховая труба.

3. Внутреннее ухо. Во внутреннем ухе находятся перепончатый лабиринт, располагающийся в костном лабиринте внутри пирамиды височной кости.

Наружное ухо.

Ушная раковина – эластичный хрящ сложной формы, покрытый кожей. Ее вогнутая поверхность обращена вперед, нижняя часть – долька ушной раковины – мочка, лишена хряща и заполнена жиром. На вогнутой поверхности расположен противозавиток, спереди от него углубление – раковина уха, на дне которого находится наружное слуховое отверстие ограниченное спереди козелком. Наружный слуховой проход состоит из хрящевого и костного отделов.

Барабанная перепонка отделяет наружное ухо от среднего. Она представляет собой пластинку, состоящую из двух слоев волокон. В наружном волокна расположены радиально, во внутреннем циркулярно.

В центре барабанной перепонки вдавление – пупок – место прикрепления к перепонке одной из слуховых косточек – молоточка. Барабанная перепонка вставлена в борозду барабанной части височной кости. В перепонке различают верхнюю(меньшую) свободную ненатянутую и нижнюю(большую) натянутую части. Перепонка расположена косо по отношению к оси слухового прохода.

Среднее ухо.

Барабанная полость – воздухоносная, расположена в основании пирамиды височной кости, слизистая оболочка выстлана однослойным плоским эпителием, который переходит в кубический или цилиндрический.

В полости находятся три слуховые косточки, сухожилия мышц, натягивающих барабанную перепонку и стремя. Здесь же проходит барабанная струна – ветвь промежуточного нерва. Барабанная полость переходит в слуховую трубу, которая открывается в носовой части глотки глоточным отверстием слуховой трубы.

Полость имеет шесть стенок:

1. Верхняя – покрышечная стенка отделяет барабанную полость от полости черепа.

2. Нижняя – яремная стенка отделяет барабанную полость от яремной вены.

3. Медианальная – лабиринтная стенка отделяет барабанную полость от костного лабиринта внутреннего уха. В ней имеются окно преддверия и окно улитки, ведущие в отделы костного лабиринта. Окно преддверия закрыто основанием стремени, окно улитки закрыто вторичной барабанной перепонкой. Над окном преддверия в полость выступает стенка лицевого нерва.

4. Литеральная – перепончатая стенка образована барабанной перепонкой и окружающими ее отделами височной кости.

5. Передняя – сонная стенка отделяет барабанную полость от канала внутренней сонной артерии, на ней открывается барабанное отверстие слуховой трубы.

6. В области задней сосцевидной стенки расположен вход в сосцевидную пещеру, ниже его имеется пирамидальное возвышение, внутри которого начинается стременная мышца.

Слуховые косточки – стремя, наковальня и молоточек.

Они названы так благодаря своей форме – самые мелкие в человеческом организме, составляют цепь, соединяющую барабанную перепонку с окном преддверия, ведущим во внутреннее ухо. Косточки передают звуковые колебания от барабанной перепонки окну преддверия. Рукоятка молоточка сращена с барабанной перепонкой. Головка молоточка и тело наковальни соединены между собой суставом и укреплены связками. Длинный отросток наковальни сочленяется с головкой стремечка, основание которого входит в окно преддверия, соединяясь с его краем посредством кольцевой связки стремени. Косточки покрыты слизистой оболочкой.

Сухожилие мышцы, напрягающей барабанную перепонку, прикрепляется к рукоятке молоточка, стременной мышцы - к стремени рядом с его головкой. Указанные мышцы регулируют движение косточек.

Слуховая труба (Евстахиева) длиной около 3.5 см. выполняет очень важную функцию – способствует выравниванию давления воздуха внутри барабанной полости по отношению к наружной среде.

Внутреннее ухо.

Внутреннее ухо расположено в височной кости. В костном лабиринте, изнутри выстланном надкостницей, залегает перепончатый лабиринт, повторяющий формы костного лабиринта. Между обоими лабиринтами имеется щель, заполненная перилимфой. Стенки костного лабиринта образованы компактной костной тканью. Он расположен между барабанной полостью и внутренним слуховым проходом и состоит из преддверия, трех полукружных каналов и улитки.

Костное преддверие – овальная полость, сообщающаяся с полукружными каналами, на ее стенке имеется окно преддверия, у начала улитки – окно улитки.

Три костных полукружных канала лежат в трех взаимно-перпендикулярных плоскостях. Каждый полукружный канал имеет по две ножки, одна из которых перед впадением в преддверие расширяется, образуя ампулу. Соседние ножки переднего и заднего каналов соединяются, образуя общую костную ножку, поэтому три канала открываются в преддверие пятью отверстиями. Костная улитка образует 2.5 завитка вокруг горизонтально лежащего стержня – веретена, вокруг которого наподобие винта закручена костная спиральная пластинка, пронизанная тонкими канальцами, где проходят волокна улитковой части преддверно-улиткового нерва. В основании пластинки расположен спиральный канал, в котором лежит спиральный узел – кортиев орган. Он состоит из множества натянутых, словно струны, волокон.

Тема 15. ФИЗИОЛОГИЯ СЛУХОВОЙ СИСТЕМЫ.

Слуховая система - одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства общения. Ее функция состоит в формировании слуховых ощущений человека в ответ на действие акустических (звуковых) сигналов, которые представляют собой колебания воздуха с разной частотой и силой. Человек слышит звуки, которые находятся в диапазоне от 20 до 20 000 Гц. Известно, что многие животные обладают значительно более широким диапазоном слышимых звуков. Например, дельфины «слышат» звуки частотой до 170 000 Гц. Но слуховая система человека предназначена преимущественно для того, чтобы слышать речь другого человека, и в этом отношении ее совершенство нельзя даже близко сравнивать со слуховыми системами других млекопитающих.

Слуховой анализатор человека состоит из

1) периферического отдела (наружного, среднего и внутреннего уха);

2) слухового нерва;

3) центральных отделов (кохлеарные ядра и ядра верхней оливы, задние бугры четверохолмия, внутреннее коленчатое тело, слуховая область коры головного мозга).

В наружном, среднем и внутреннем ухе происходят необходимые для слухового восприятия подготовительные процессы, смысл которых состоит в оптимизации параметров передаваемых звуковых колебаний при одновременном сохранении характера сигналов. Во внутреннем ухе происходит преобразование энергии звуковых волн в рецепторные потенциалы волосковых клеток .

Наружное ухо включает ушную раковину и наружный слуховой проход. Рельеф ушной раковины играет значительную роль в восприятии звуков. Если, например, этот рельеф уничтожить, залив воском, человек заметно хуже определяет направление источника звука. Наружный слуховой проход человека в среднем имеет длину около 9 см. Есть данные, что трубка такой длины и схожего диаметра имеет резонанс на частоте около 1 кГц, другими словами, звуки этой частоты немного усиливаются. Среднее ухо отделено от наружного барабанной перепонкой, которая имеет вид конуса с вершиной, обращенной в барабанную полость.

Рис. Слуховая сенсорная система

Среднее ухо заполнено воздухом. В нем находятся три косточки: молоточек, наковальня и стремечко , которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы. Кроме того, поверхность стремечка в 22 раза меньше барабанной перепонки, что во столько же раз усиливает его давление на мембрану овального окна. В результате этого даже слабые звуковые волны, действующие на барабанную перепонку, способны преодолеть сопротивление мембраны овального окна преддверия и привести к колебаниям жидкости в улитке. Благоприятные условия для колебаний барабанной перепонки создает также евстахиева труба , соединяющая среднее ухо с носоглоткой, что служит выравниванию давления в нем с атмосферным.

В стенке, отделяющей среднее ухо от внутреннего, кроме овального, есть еще круглое окно улитки, тоже закрытое мембраной. Колебания жидкости улитки, возникшие у овального окна преддверия и прошедшие по ходам улитки, достигают, не затухая, круглого окна улитки. В его отсутствие из-за несжимаемости жидкости колебания ее были бы невозможны.

В среднем ухе имеются также две маленькие мышцы - одна прикреплена к ручке молоточка, а другая - к стремечку. Сокращение этих мышц предотвращает слишком большие колебания косточек, вызванных громкими звуками. Это так называемый акустический рефлекс . Основной функцией акустического рефлекса является защита улитки от повреждающей стимуляции .

Внутреннее ухо . В пирамиде височной кости имеется сложной формы полость (костный лабиринт) , составными частями которой являются преддверие, улитка и полукружные каналы. Она включает два рецепторных аппарата: вестибулярный и слуховой. Слуховой частью лабиринта является улитка , которая представляет собой спираль из двух с половиной завитков, закрученных вокруг полого костного веретена. Внутри костного лабиринта как в футляре размещен перепончатый лабиринт, по форме соответствующий костному. Вестибулярный аппарат будет рассмотрен в следующей теме.

Опишем слуховой орган. Костный канал улитки разделен двумя мембранами - основной, или базилярной , и рейснеровой или вестибулярной - на три отдельных канала, или лестницы: барабанную, вестибулярную и среднюю (перепончатый улитковый канал) . Каналы внутреннего уха заполнены жидкостями, ионный состав которых в каждом канале специфичен. Средняя лестница заполнена эндолимфой с высоким содержанием ионов калия . Две другие лестницы заполнены перилимфой, состав которой не отличается от тканевой жидкости . Вестибулярная и барабанная лестницы на вершине улитки соединяются через небольшое отверстие - геликотрему, средняя лестница заканчивается слепо.

На базилярной мембране расположен кортиев орган , состоящий из нескольких рядов волосковых рецепторных клеток, поддерживаемых опорным эпителием. Около 3500 волосковых клеток образуют внутренний ряд (внутренние волосковые клетки ), а приблизительно 12-20 тысяч наружных волосковых клеток образуют три, а в области верхушки улитки пять продольных рядов. На обращенной внутрь средней лестницы поверхности волосковых клеток имеются покрытые плазматической мембраной чувствительные волоски - стереоцилии. Волоски соединены с цитоскелетом, их механическая деформация ведет к открытию ионных каналов мембраны и возникновению рецепторного потенциала волосковых клеток. Над кортиевым органом имеется желеобразная покровная (текториальная) мембрана , образованная гликопротеином и коллагеновыми волокнами и прикрепленная к внутренней стенке лабиринта. Верхушки стереоцилии наружных волосковых клеток погружены в вещество покровной пластинки.

Средняя лестница, заполненная эндолимфой, заряжена положительно (до +80 мВ) относительно двух других лестниц. Если учесть, что потенциал покоя отдельных волосковых клеток около - 80 мВ, то в целом разность потенциала (эндокохлеарный потенциал ) на участке средняя лестница - кортиев орган может составить около 160 мВ. Эндокохлеарный потенциал играет важную роль в возбуждении волосковых клеток. Предполагают, что волосковые клетки поляризованы этим потенциалом до критического уровня. В этих условиях минимальные механические воздействия могут вызвать возбуждение рецептора.

Нейрофизиологические процессы в кортиевом органе. Звуковая волна действует на барабанную перепонку, и далее через систему косточек звуковое давление передается на овальное окно и воздействует на перилимфу вестибулярной лестницы. Поскольку жидкость несжимаема, перемещение перилимфы может передаваться через геликотрему в барабанную лестницу, а оттуда через круглое окно - обратно в полость среднего уха. Перилимфа может перемещаться и более коротким путем: рейснерова мембрана изгибается, и через среднюю лестницу давление передается на основную мембрану, затем в барабанную лестницу и через круглое окно в полость среднего уха. Именно в последнем случае раздражаются слуховые рецепторы. Колебания основной мембраны приводят к смещению волосковых клеток относительно покровной мембраны. При деформации стереоцилий волосковых клеток в них возникает рецепторный потенциал, что приводит к выделению медиатора глутамата . Воздействуя на постсинаптическую мембрану афферентного окончания слухового нерва, медиатор вызывает генерацию в нем возбуждающего постсинаптического потенциала и далее генерацию распространяющихся в нервные центры импульсов.

Венгерский ученый Г. Бекеши (1951) предложил «теорию бегущей волны», позволяющую понять, как звуковая волна определенной частоты возбуждает волосковые клетки, находящиеся в определенном месте основной мембраны. Эта теория получила всеобщее признание. Основная мембрана расширяется от основания улитки к ее вершине примерно в 10 раз (у человека от 0,04 до 0,5 мм). Предполагается, что основная мембрана закреплена только по одному краю, остальная ее часть свободно скользит, что соответствует морфологическим данным. Теория Бекеши объясняет механизм анализа звуковой волны следующим образом: высокочастотные колебания проходят по мембране лишь короткое расстояние, а длинные волны распространяются далеко. Тогда начальная часть основной мембраны служит высокочастотным фильтром, а длинные волны проходят весь путь до геликотремы. Максимальные перемещения для разных частот происходят в разных точках основной мембраны: чем ниже тон, тем ближе его максимум к верхушке улитки. Таким образом, высота звука кодируется местом на основной мембране. Такая структурно-функциональная организация рецепторной поверхности основной мембраны. определяется как тонотопическая.

Рис. Тонотопическая схема улитки

Физиология путей и центров слуховой системы. Нейроны 1-го порядка (биполярные нейроны) находятся в спиральном ганглии, который расположен параллельно кортиеву органу и повторяет завитки улитки. Один отросток биполярного нейрона образует синапс на слуховом рецепторе, а другой направляется к головному мозгу, образуя слуховой нерв. Волокна слухового нерва выходят из внутреннего слухового прохода и достигают головного мозга в области так называемого мостомозжечкового угла или латерального угла ромбовидной ямки (это анатомическая граница между продолговатым мозгом и мостом).

Нейроны 2-го порядка образуют в продолговатом мозге комплекс слуховых ядер (вентральное и дорсальное ). В каждом из них имеется тонотопическая организация. Таким образом, частотная проекция кортиева органа в целом упорядоченно повторяется в слуховых ядрах. Аксоны нейронов слуховых ядер поднимаются в лежащие выше структуры слухового анализатора как ипси-, так и контралатерально.

Следующий уровень слуховой системы находится на уровне моста и представлен ядрами верхней оливы (медиальным и латеральным) и ядром трапециевидного тела. На этом уровне уже осуществляется бинауральный (от обоих ушей) анализ звуковых сигналов. Проекции слуховых путей на указанные ядра моста организованы также тонотопически. Большинство нейронов ядер верхней оливы возбуждаются бинаурально . Благодаря бинауральному слуху сенсорная система человека определяет источники звука, находящиеся в стороне от средней линии, поскольку звуковые волны раньше действуют на ближнее к этому источнику ухо. Обнаружены две категории бинауральных нейронов. Одни возбуждаются звуковыми сигналами от обоих ушей (ВВ-тип), другие возбуждаются от одного уха, но тормозятся от другого (ВТ-тип). Существование таких нейронов обеспечивает сравнительный анализ звуковых сигналов, возникающих с левой или правой от человека стороны, что необходимо для его пространственной ориентации. Некоторые нейроны ядер верхней оливы максимально активны при расхождении времени поступления сигналов от правого и левого уха, другие нейроны наиболее сильно реагируют на различную интенсивность сигналов.

Ядро трапециевидного тела получает преимущественно контралатеральную проекцию от комплекса слуховых ядер, и в соответствии с этим нейроны реагируют преимущественно на звуковую стимуляцию контралатерального уха. В этом ядре также обнаруживается тонотопия.

Аксоны клеток слуховых ядер моста идут в составе латеральной петли. Основная часть его волокон (в основном от оливы) переключается в нижнем двухолмии, другая часть идет в таламус и заканчивается на нейронах внутреннего (медиального) коленчатого тела, а также в верхнем двухолмии.

Нижнее двухолмие , расположенное на дорсальной поверхности среднего мозга, является важнейшим центром анализа звуковых сигналов. На этом уровне, по-видимому, заканчивается анализ звуковых сигналов, необходимых для ориентировочных реакций на звук. Аксоны клеток заднего холма направляются в составе его ручки к медиальному коленчатому телу. Однако часть аксонов идет к противоположному холму, образуя интеркаликулярную комиссуру.

Медиальное коленчатое тело , относящееся к таламусу, является последним переключательным ядром слуховой системы на пути к коре. Его нейроны расположены тонотопически и образуют проекцию в слуховую кору. Некоторые нейроны медиального коленчатого тела активируются в ответ на возникновение либо на окончание сигнала, другие реагируют только на частотные или амплитудные его модуляции. Во внутреннем коленчатом теле имеются нейроны, способные постепенно увеличивать активность при неоднократном повторении одного и того же сигнала.

Слуховая кора представляет высший центр слуховой системы и располагается в височной доле. У человека в ее состав входят поля 41, 42 и частично 43. В каждой из зон имеет место тонотопия, т. е полное представительство рецепторного аппарата кортиева органа. Пространственное представительство частот, в слуховых зонах сочетается с колончатой организацией слуховой коры, особенно выраженной в первичной слуховой коре (поле 41). В первичной слуховой коре кортикальные колонки расположены тонотопически для раздельной переработки информации о звуках различной частоты слухового диапазона. Они также содержат нейроны, которые избирательно реагируют на звуки различной продолжительности, на повторяющиеся звуки, на шумы с широким частотным диапазоном и т. п. В слуховой коре происходит объединение информации о высоте тона и его интенсивности, о временных интервалах между отдельными звуками.

Вслед за этапом регистрации и объединения элементарных признаков звукового раздражителя, который осуществляют простые нейроны , в переработку информации включаются комплексные нейроны , избирательно реагирующие только на узкий диапазон частотных или амплитудных модуляций звука. Подобная специализация нейронов позволяет слуховой системе создавать целостные слуховые образы, с характерными только для них сочетаниями элементарных компонентов слухового раздражителя. Такие сочетания могут быть зафиксированы энграммами памяти, что в дальнейшем позволяет сравнивать новые акустические стимулы с прежними. Некоторые комплексные нейроны слуховой коры возбуждаются сильнее всего в ответ на действие звуков человеческой речи.

Частотно-пороговые характеристики нейронов слуховой системы . Как было описано выше, все уровни слуховой системы млекопитающих имеют тонотопический принцип организации. Другая важная характеристика нейронов слуховой системы - способность избирательно реагировать на определенную высоту звука.

У всех животных имеется соответствие между частотным диапазоном издаваемых звуков и аудиограммой, которая характеризует слышимые звуки. Частотную избирательность нейронов слуховой системы описывают частотно-пороговой кривой (ЧПК), отражающей зависимость порога реакции нейрона от частоты тонального стимула. Частота, при которой порог возбуждения данного нейрона минимальный, называется характеристической частотой. ЧПК волокон слухового нерва имеет V-образную форму с одним минимумом, который соответствует характеристической частоте данного нейрона. ЧПК слухового нерва имеет заметно более острую настройку по сравнению с амплитудно-частотными кривыми основной мембран). Предполагают, что в обострении частотно-пороговой кривой участвуют эфферентные влияния уже на уровне слуховых рецепторов (волосковые рецепторы являются вторично-чувствующими и получают эфферентные волокна).

Кодирование интенсивности звука. Сила звука кодируется частотой импульсации и числом возбужденных нейронов. Поэтому считают, что плотность потока импульсации является нейрофизиологическим коррелятом громкости. Увеличение числа возбужденных нейронов при действии все более громких звуков обусловлено тем, что нейроны слуховой системы отличаются друг от друга по порогам реакций. При слабом стимуле в реакцию вовлекается лишь небольшое число наиболее чувствительных нейронов, а при усилении звука в реакцию вовлекается все большее число дополнительных нейронов с более высокими порогами реакций. Кроме того, пороги возбуждения внутренних и наружных рецепторных клеток неодинаковы: возбуждение внутренних волосковых клеток возникает при большей силе звука, поэтому в зависимости от его интенсивности меняется соотношение числа возбужденных внутренних и наружных волосковых клеток.

В центральных отделах слуховой системы обнаружены нейроны, обладающие определенной избирательностью к интенсивности звука, т.е. реагирующие на довольно узкий диапазон интенсивности звука. Нейроны с такой реакцией впервые появляются на уровне слуховых ядер. На более высоких уровнях слуховой системы их количество возрастает. Диапазон выделяемых ими интенсивностей суживается, достигая минимальных значений у нейронов коры. Предполагают, что такая специализация нейронов отражает последовательный анализ интенсивности звука в слуховой системе.

Субъективно воспринимаемая громкость звучания зависит не только от уровня звукового давления, но и от частоты звукового стимула. Чувствительность слуховой системы максимальна для раздражителей с частотами от 500 до 4000 Гц, при других частотах она снижается.

Бинауральный слух . Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве . Это свойство основано на наличии бинаурального слуха , или слушания двумя ушами. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.

При раздельной стимуляции правого и левого уха через наушники задержка между звуками уже в 11 мкс или различие в интенсивности двух звуков на 1 дБ приводят к кажущемуся сдвигу локализации источника звука от средней линии в сторону более раннего или более сильного звука. В слуховых центрах есть нейроны с острой настройкой на определенный диапазон интерауральных различий по времени и интенсивности. Найдены также клетки, реагирующие лишь на определенное направление движения источника звука в пространстве.





error: Контент защищен !!