Какие у мухи глаза. Сколько глаз у мухи или пчелы? С точки зрения насекомого

С точки зрения насекомого

Считается, что до 90% знаний о внешнем мире человек получает при помощи своего стереоскопического зрения. Зайцы обзавелись боковым зрением, благодаря которому они могут видеть объекты, находящиеся сбоку и даже позади себя. У глубоководных рыб глаза могут занимать до половины головы, а теменной «третий глаз» миноги позволяет ей неплохо ориентироваться в воде. Змеи способны видеть только движущийся объект, а самыми зоркими в мире признаны глаза сокола-сапсана, способного выследить добычу с высоты 8 км!

Но как видят мир представители самого многочисленного и разнообразного класса живых существ на Земле – насекомых? Наряду с позвоночными животными, которым они проигрывают только по размерам тела, именно насекомые обладают наиболее совершенным зрением и сложноустроенными оптическими системами глаза. Хотя фасеточные глаза насекомых не обладают аккомодацией, вследствие чего их можно назвать близорукими, однако они, в отличие от человека, способны различать чрезвычайно быстро двигающиеся объекты. А благодаря упорядоченной структуре своих фоторецепторов многие из них обладают настоящим «шестым чувством» – поляризационным зрением

Меркнет зрение – сила моя,
Два незримых алмазных копья…
А. Тарковский (1983)

Трудно переоценить значение света (электромагнитного излучения видимого спектра) для всех обитателей нашей планеты. Солнечный свет служит основным источником энергии для фотосинтезирующих растений и бактерий, а опосредованно через них – и для всех живых организмов земной биосферы. Свет непосредственно влияет на протекание всего многообразия жизненных процессов животных, от размножения до сезонной смены окраски. И, конечно, благодаря восприятию света специальными органами чувств, животные получают значительную (а часто и большую) часть сведений об окружающем мире, могут различать форму и цвет объектов, определять движение тел, ориентироваться в пространстве и т. п.

Зрение особенно важно для животных, способных активно передвигаться в пространстве: именно с возникновением подвижных животных начал формироваться и совершенствоваться зрительный аппарат – сложнейший из всех известных сенсорных систем. К таким животным относятся позвоночные и среди беспозвоночных – головоногие моллюски и насекомые. Именно эти группы организмов могут похвалиться самыми сложноустроенными органами зрения.

Однако зрительный аппарат у этих групп значительно различается, как и восприятие образов. Считается, что насекомые в целом более примитивны по сравнению с позвоночными, не говоря уже о высшем их звене – млекопитающих, и, естественно, человеке. Но вот насколько различается их зрительное восприятие? Иными словами, намного ли отличается от нашего мир, увиденный глазами маленького создания по имени муха?

Мозаика из шестигранников

Зрительная система насекомых в принципе не отличается от таковой у других животных и состоит из периферических органов зрения, нервных структур и образований центральной нервной системы. Но что касается морфологии органов зрения, то здесь различия просто бросаются в глаза.

Всем знакомы сложные фасеточные глаза насекомых, которые встречаются у взрослых насекомых или у личинок насекомых, развивающихся с неполным превращением , т. е. без стадии куколки. Исключений из этого правила не так много: это блохи (отряд Siphonaptera), веерокрылые (отряд Strepsiptera), большинство чешуйниц (семейство Lepismatidae) и весь класс скрыточелюстных (Entognatha).

Фасеточный глаз по виду напоминает корзинку спелого подсолнуха: он состоит из набора фасеток (омматидиев ) – автономных приемников светового излучения, имеющих все необходимое для регуляции светового потока и формирования изображения. Число фасеток сильно варьирует: от нескольких у щетинохвосток (отряд Thysanura) до 30 тыс. у стрекоз (отряд Aeshna). Удивительно, но число омматидиев может варьироваться даже внутри одной систематической группы: например, ряд видов жуков-жужелиц, обитающих на открытых пространствах, имеют хорошо развитые фасеточные глаза с большим количеством омматидиев, в то время как у жужелиц, обитающих под камнями, глаза сильно редуцированы и состоят из небольшого числа омматидиев.

Верхний слой омматидиев представлен роговицей (хрусталиком) – участком прозрачной кутикулы, секретируемой специальными клетками, которая представляет собой своеобразную шестигранную двояковыпуклую линзу. Под роговицей у большинства насекомых располагается прозрачный кристаллический конус, структура которого может различаться у разных видов. У некоторых видов, особенно ведущих ночной образ жизни, в светопреломляющем аппарате имеются дополнительные структуры, играющие главным образом роль антибликового покрытия и увеличивающие светопропускание глаза.

Изображение, сформированное хрусталиком и кристаллическим конусом, попадает на светочувствительные ретинальные (зрительные) клетки, представляющие собой нейрон с коротким хвостиком-аксоном. Несколько ретинальных клеток образуют единый цилиндрический пучок – ретинулу . Внутри каждой такой клетки на стороне, обращенной внутрь омматидия, расположен рабдомер – особое образование из множества (до 75-100 тыс.) микроскопических трубочек-ворсинок, в мембране которых содержится зрительный пигмент. Как и у всех позвоночных, этим пигментом является родопсин – сложный окрашенный белок. Благодаря огромной площади этих мембран фоторецепторный нейрон содержит большое количество молекул родопсина (например, у плодовой мушки Drosophila это число превышает 100 млн!).

Рабдомеры всех зрительных клеток, объединенные в рабдом , и являются светочувствительными, рецепторными элементами фасеточного глаза, а все ретинулы в совокупности составляют аналог нашей сетчатки.

Светопреломляющий и светочувствительный аппарат фасетки по периметру окружают клетки с пигментами, которые играют роль световой изоляции: благодаря им световой поток, преломляясь, попадает на нейроны только одного омматидия. Но так устроены фасетки в так называемых фотопических глазах, приспособленных к яркому дневному свету.

Для видов, ведущих сумеречный или ночной образ жизни, характерны глаза другого типа – скотопические . Такие глаза имеют ряд приспособлений к недостаточному световому потоку, например, очень большие рабдомеры. Кроме того, в омматидиях таких глаз светоизолирующие пигменты могут свободно мигрировать внутри клеток, благодаря чему световой поток может попадать на зрительные клетки соседних омматидиев. Этот феномен лежит в основе и так называемой темновой адаптации глаз насекомых – увеличении чувствительности глаза при недостаточном освещении.

При поглощении рабдомерами фотонов света в ретинальных клетках генерируются нервные импульсы, которые по аксонам направляются в парные зрительные доли головного мозга насекомых. В каждой зрительной доле имеется по три ассоциативных центра, где и осуществляется переработка потока зрительной информации, одновременно идущей от множества фасеток.

От одного до тридцати

Согласно древним легендам, у людей некогда имелся «третий глаз», отвечающий за сверхчувственное восприятие. Доказательств этому нет, однако та же минога и другие животные, такие как ящерица-гаттерия и некоторые земноводные, имеют необычные светочувствительные органы в «неположенном» месте. И в этом смысле насекомые не отстают от позвоночных: помимо обычных фасеточных глаз у них встречаются небольшие дополнительные глазки – оцелли , расположенные на лобно-теменной поверхности, и стеммы – по бокам головы.

Оцелли имеются в основном у хорошо летающих насекомых: взрослых особей (у видов с полным превращением) и личинок (у видов с неполным превращением). Как правило, это три глазка, расположенные в виде треугольника, но иногда срединный либо два боковых могут отсутствовать. По строению оцелли сходны с омматидиями: под светопреломляющей линзой у них находится слой прозрачных клеток (аналог кристаллического конуса) и сетчатка-ретинула.

Стеммы можно обнаружить у личинок насекомых, развивающихся с полным превращением. Их число и расположение варьирует в зависимости от вида: с каждой стороны головы может располагаться от одного до тридцати глазков. У гусениц чаще встречается шесть глазков, расположенных так, что каждый из них имеет обособленное поле зрения.

В разных отрядах насекомых стеммы могут отличаться друг от друга по строению. Эти различия связаны, возможно, с их происхождением от разных морфологических структур. Так, число нейронов в одном глазке может составлять от нескольких единиц до нескольких тысяч. Естественно, это сказывается на восприятии насекомыми окружающего мира: если некоторые из них могут видеть лишь перемещение светлых и темных пятен, то другие способны распознавать размеры, форму и цвет предметов.

Как мы видим, и стеммы, и омматидии представляют собой аналоги одиночных фасеток, пусть и видоизмененные. Однако у насекомых имеются и другие «запасные» варианты. Так, некоторые личинки (особенно из отряда двукрылых) способны распознать свет даже при полностью затененных глазках с помощью фоточувствительных клеток, расположенных на поверхности тела. А некоторые виды бабочек имеют так называемые генитальные фоторецепторы.

Все такие фоторецепторные зоны устроены схожим образом и представляют собой скопление из нескольких нейронов под прозрачной (или полупрозрачной) кутикулой. За счет подобных дополнительных «глаз» личинки двукрылых избегают открытых пространств, а самки бабочек используют их при откладке яиц в затененных местах.

Фасеточный поляроид

На что способны сложноустроенные глаза насекомых? Как известно, у любого оптического излучения можно выделить три характеристики: яркость , спектр (длину волны) и поляризацию (ориентированность колебаний электромагнитной составляющей).

Спектральную характеристику света насекомые используют для регистрации и распознавания объектов окружающего мира. Практически все они способны воспринимать свет в диапазоне от 300-700 нм, в том числе и недоступную для позвоночных ультрафиолетовую часть спектра.

Как правило, разные цвета воспринимаются различными областями сложного глаза насекомых. Такая «локальная» чувствительность может различаться даже в пределах одного вида в зависимости от половой принадлежности особи. Нередко в одном и том же омматидии могут находиться различные цветовые рецепторы. Так, у бабочек рода Papilio два фоторецептора имеют зрительный пигмент с максимумом поглощения 360, 400 или 460 нм, еще два – 520 нм, а остальные – от 520 до 600 нм (Kelber et al. , 2001).

Но это далеко не все, что умеет глаз насекомого. Как упоминалось выше, в зрительных нейронах фоторецепторная мембрана микроворсинок рабдомера свернута в трубку круглого или гексагонального сечения. За счет этого часть молекул родопсина не участвуют в поглощении света из-за того, что дипольные моменты этих молекул располагаются параллельно ходу светового луча (Говардовский, Грибакин, 1975). В результате микроворсинка приобретает дихроизм – способность к различному поглощению света в зависимости от его поляризации. Повышению поляризационной чувствительности омматидия способствует и то, что молекулы зрительного пигмента не располагаются в мембране хаотично, как у человека, а ориентированы в одном направлении, да к тому же жестко закреплены.

Если глаз способен различить два источника света на основе их спектральных характеристик вне зависимости от интенсивности излучения, можно говорить о цветовом зрении . Но если он делает это, фиксируя поляризационный угол, как в данном случае, мы имеем все основания говорить о поляризационном зрении насекомых.

Как же воспринимают насекомые поляризованный свет? Исходя из структуры омматидия, можно предположить, что все фоторецепторы должны быть одновременно чувствительными как к определенной длине (длинам) световых волн, так и к степени поляризации света. Но в таком случае могут возникнуть серьезные проблемы – так называемое ложное восприятие цвета . Так, свет, отраженный с глянцевой поверхности листьев или водной глади, частично поляризуется. В этом случае мозг, анализируя данные фоторецепторов, может ошибиться в оценке интенсивности окраски либо формы отражающей поверхности.

Насекомые научились успешно справляться с подобными трудностями. Так, у ряда насекомых (в первую очередь мух и пчел) в омматидиях, воспринимающих только цвет, формируется рабдом закрытого типа , в котором рабдомеры не контактируют между собой. При этом у них имеются также омматидии с обычными прямыми рабдомами, чувствительные и к поляризационному свету. У пчел такие фасетки располагаются по краю глаза (Wehner, Bernard, 1993). У некоторых бабочек искажения при восприятии цвета снимаются за счет значительного искривления микроворсинок рабдомеров (Kelber et al. , 2001).

У многих других насекомых, особенно у чешуекрылых, во всех омматидиях сохраняются обычные прямые рабдомы, поэтому их фоторецепторы способны одновременно воспринимать и «цветной», и поляризованный свет. При этом каждый из этих рецепторов чувствителен лишь к определенному поляризационному углу преференции и определенной длине световой волны. Такое сложное зрительное восприятие помогает бабочкам при питании и откладке яиц (Kelber et al. , 2001).

Незнакомая Земля

Можно бесконечно углубляться в особенности морфологии и биохимии глаза насекомых и все равно затруднится в ответе на такой простой и одновременно невероятно сложный вопрос: как видят насекомые?

Человеку трудно даже представить образы, возникающие в головном мозге насекомых. Но все нужно заметить, что популярная сегодня мозаичная теория зрения , согласно которой насекомое видит изображение в виде своеобразного пазла из шестигранников, не совсем точно отражает суть проблемы. Дело в том, что хотя каждая единичная фасетка фиксирует отдельный образ, являющийся лишь частью цельной картины, эти изображения могут перекрываться с изображениями, полученными с соседних фасеток. Поэтому изображение мира, полученное с помощью огромного глаза стрекозы, состоящего из тысяч миниатюрных камер-фасеток, и «скромного» шестифасеточного глаза муравья, будет сильно различаться.

Что касается остроты зрения (разрешающей способности , т. е. способности различать степень расчлененности объектов), то у насекомых она определяется количеством фасеток, приходящихся на единицу выпуклой поверхности глаза, т. е. их угловой плотностью. В отличие от человека, глаза насекомых не обладают аккомодацией: радиус кривизны светопроводящей линзы у них не меняется. В этом смысле насекомых можно назвать близорукими: они видят тем больше деталей, чем ближе к объекту наблюдения находятся.

При этом насекомые с фасеточными глазами способны различать очень быстро движущиеся объекты, что объясняется высокой контрастностью и малой инерционностью их зрительной системы. К примеру, человек может различать лишь около двадцати вспышек в секунду, а пчела – в десять раз больше! Такое свойство жизненно важно для быстролетающих насекомых, которым нужно принимать решения непосредственно в полете.

Цветовые образы, воспринимаемые насекомыми, также могут быть гораздо сложнее и необычнее, чем у нас. К примеру, цветок, кажущийся нам белым, часто скрывает в своих лепестках множество пигментов, способных отражать ультрафиолетовый свет. И в глазах насекомых-опылителей он сверкает множеством красочных оттенков – указателей на пути к нектару.

Считается, что насекомые «не видят» красный цвет, который в «чистом виде» и встречается в прирорде чрезвычайно редко (исключение – тропические растения, опыляемые колибри). Однако цветы, окрашенные в красный цвет, часто содержат и другие пигменты, способные отражать коротковолновые излучения. А если учесть, что многие из насекомых способны воспринимать не три основных цвета, как человек, а больше (иногда до пяти!), то их зрительные образы должны представлять собой просто феерию красок.

И, наконец, «шестое чувство» насекомых – поляризационное зрение. С его помощью насекомым удается увидеть в окружающем мире то, о чем человек может получить лишь слабое представление с помощью специальных оптических фильтров. Насекомые же таким способом могут безошибочно определять местонахождение солнца на облачном небе и использовать поляризованный свет в качестве «небесного компаса». А водные насекомые в полете обнаруживают водоемы по частично поляризованному свету, отраженному от зеркала воды (Schwind, 1991). Но вот какие при этом они «видят» образы, человеку просто невозможно себе представить…

У всех, кто по той или иной причине интересуется зрением насекомых, может возникнуть вопрос: почему у них не сформировался камерный глаз, подобный человеческому глазу, со зрачком, хрусталиком и прочими приспособлениями?

На этот вопрос в свое время исчерпывающе ответил выдающийся американский физик-теоретик, Нобелевский лауреат Р. Фейнман: «Этому мешает несколько довольно интересных причин. Прежде всего, пчела слишком мала: если бы она имела глаз, похожий на наш, но соответственно уменьшенный, то размер зрачка оказался бы порядка 30 мкм, а поэтому дифракция была бы столь велика, что пчела все равно не могла бы видеть лучше. Слишком маленький глаз - это не очень хорошо. Если же такой глаз сделать достаточного размера, то он должен быть не меньше головы самой пчелы. Ценность сложного глаза в том и состоит, что он практически не занимает места – просто тоненький слой на поверхности головы. Так что, прежде чем давать советы пчеле, не забывайте, что у нее есть свои собственные проблемы!»

Поэтому неудивительно, что насекомые выбрали свой путь в зрительном познании мира. Да и нам, чтобы видеть его с точки зрения насекомых, пришлось бы, для сохранения привычной остроты зрения, обзавестись громадными фасеточными глазами. Вряд ли такое приобретение оказалось бы нам полезным с точки зрения эволюции. Каждому – свое!

Литература

Тыщенко В. П. Физиологияя насекомых. М.: Высшая школа, 1986, 304 С.

Klowden M. J. Physiological Systems in Insects. Academ Press, 2007. 688 p.

Nation J. L. Insect Physiology and Biochemistry. Second Edition: CRC Press, 2008.

Жизнь на Земле зависит от Солнца, которое светит как целые триллионы лампочек. Неудивительно, что почти все животные чувствуют солнечный свет, в котором буквально утопает мир. Однако не все животные имеют два глаза, как мы.

Фактически органы зрения у живых существ различаются так же сильно, как и формы снежинок.

Но у животных, которые могут чувствовать свет, есть общее свойство - все они имеют светочувствительные клетки, называемые фоторецепторами. Некоторые черви, например, ощущают свет кожей, поскольку их нервные клетки имеют специальные окончания, чувствительные к свету.

Другие животные, так же как и люди, имеют особые органы - глаза, которые не только чувствуют свет, но и могут регулировать его количество. Например, в глазу человека есть небольшое отверстие, называемое зрачком, которое изменяет свои размеры, чтобы пропускать различное количество света. (Таким же образом свет через объектив попадает на фотопленку.) Кроме того, имеется еще веко, которое то открывается, то закрывается, как шторка, когда свет становится слишком ярким.

Глаза большинства позвоночных, членистоногих (пауков, крабов), некоторых моллюсков (осьминогов и кальмаров) и некоторых червей позволяют животным видеть мир во всей его полноте, со всеми картинками. Однако некоторые животные, например определенные виды червей, могут различать только свет и тьму, они не видят картинок.

Большинство насекомых имеют пару сложных глаз, состоящих из отдельных маленьких глазок, которые называют фасетками, или омматидиями. Каждая фасетка является линзой - у комнатной мухи, например, их по 4000 в каждом глазу. (В глазах других насекомых фасеток еще больше: у бабочки их 17 тысяч, а у стрекозы - целых 28 тысяч!) Когда муха смотрит на цветок, каждая фасетка видит крошечную часть цветка, а мозг соединяет тысячи кусочков-пазлов картинки в одно общее изображение цветка.

В отличие от наших маленьких глаз, составные глаза мухи занимают значительную часть головы. У многих особей мужского пола глаза настолько огромные, что на лбу они соединяются. Если этого оказывается недостаточно, то у мух имеются еще три простых глаза на лбу.

Составным глазом хорошо смотреть на близки объекты - тогда их изображение получается очень четким. Если вы будете держать печенье слишком близко от своих глаз, оно не попадет в фокус. Но если бы вы были мухой, то наиболее четкое изображение печенья вы получили бы, ползая непосредственно по его поверхности.

У ящериц тоже необычные глаза. В дополнении к паре глаз, хорошо приспособленных для дальнего зрения, у некоторых ящериц есть третий глаз в верхней части черепа, который чувствует свет и тьму, но не воспринимает картинок.

Очень хитроумное устройство глаз у так называемых четырехглазых рыб, которые обитают в Мексике и Центральной Америке. На самом деле у четырехглазой рыбы всего два глаза, но каждый глаз разделен выростом радужной оболочки на верхнюю и нижнюю половины. Верхние половинки глаз приспособлены для того, чтобы видеть в воздухе над водой. Нижние половинки прекрасно видят подводные объекты. Таким образом, четырехглазая рыба, плавая у самой поверхности воды, держит свои верхние глаза над водой, как два перископа.

Все люди знают, что поймать или прихлопнуть муху очень сложно: она очень хорошо видит и моментально реагирует на любые движения, взлетая вверх. Разгадка кроется в уникальном зрении этого насекомого. Ответ на вопрос о том, сколько глаз у мухи, поможет понять причину ее неуловимости.

Устройство зрительных органов

Домашняя или обыкновенная муха имеет черно-серый окрас туловища длиной до 1 см и немного желтоватое брюшко, 2 пары серых крыльев и голову с большими глазами. Она относится к самым древним жителям планеты, о чем свидетельствуют данные археологов, обнаруживших экземпляры, датируемые 145 млн. лет.

При рассмотрении головы мухи под микроскопом можно увидеть, что у нее очень оригинальные объемные глаза, расположенные с двух сторон. Как видно на фото глаз мухи, они похожи визуально на мозаику, составленную из 6-гранных структурных единиц, которые называют фасетками или омматидиями, похожими на строение медовых сот. В переводе с французского слово «fasette» означает грани. Благодаря этому глаза называют фасеточными.

Как понять, что видит муха по сравнению с человеком, у которого зрение является бинокулярным, т. е. составляется из двух картинок, которые видят 2 глаза? У насекомых зрительный аппарат устроен более сложно: каждый глаз состоит из 4 тыс. фасеток, показывающих небольшую часть видимого изображения. Поэтому формирование общей картины внешнего мира у них происходит по принципу «сбора пазлов», что позволяет говорить об уникальности строения мозга мух, способного обрабатывать более 100 кадров изображений в секунду.

На заметку!

Фасеточное зрение есть не только у мух, но и у других насекомых: у пчел имеется 5 тыс. фасеток, у бабочек – 17 тыс., у рекордсменов стрекоз – до 30 тыс. омматидий.

Как видит муха

Такое устройство зрительных органов не дает возможности концентрироваться мухе на определенном предмете или объекте, а показывает общую картину всего окружающего пространства, что позволяет быстро заметить опасность. Угол обзора каждого глаза составляет 180°, что вместе составляет 360°, т. е. тип зрения является панорамным.

Благодаря такой структуре глаз, муха прекрасно обозревает все вокруг, в т. ч. видит человека, который пытается подкрасться сзади. Контроль за всем окружающим пространством обеспечивает ей 100% оборону от всех неприятностей, в т. ч. и от людей, собирающихся .

Кроме 2-х основных, у мух есть еще 3 обычных глаза, расположенных на лбу в промежутках между фасеточными. Эти органы позволяют им рассматривать близлежащие объекты более четко для распознавания и мгновенной реакции.

Интересно!

Суммируя все данные, можно констатировать, что зрение мухи представлено 5-ю глазами: 2 фасеточных – для контроля за окружающим пространством и 3 простых – для наведения резкости и распознавания объектов.

Особенности зрительных способностей мух

Зрение у мухи обыкновенной имеет еще множество интересных особенностей:

  • основные цвета и их оттенки мухи различают прекрасно, к тому же они способны отличать и ультрафиолетовые лучи;
  • они совершенно ничего не видят в темноте и потому ночью спят;
  • однако некоторые цвета из всей палитры они улавливают немного иначе, потому условно их считают дальтониками;
  • фасеточное устройство глаз позволяет фиксировать одновременно все вверху, внизу, слева, справа и впереди и дает возможность быстро отреагировать на приближающуюся опасность;
  • глаза мухи различают только мелкие предметы, к примеру, приближение руки, но крупную фигуру человека или мебель в помещении не воспринимают;
  • у самцов фасеточные глаза расположены ближе друг к другу по сравнению с самками, имеющими более широкий лоб;

Интересно!

Об остроте зрения свидетельствует и факт, сколько кадров в секунду видит муха. Для сравнения точные цифры: человек воспринимает только 16, а муха – 250-300 кадров в секунду, что помогает ей прекрасно ориентироваться при быстрой скорости в полете.

Мерцательные характеристики

Существует показатель зрительных способностей, который связан с частотой мерцания изображения, т. е. самой ее низкой границей, при которой свет фиксируется как постоянный источник освещения. Называется он CFF - critical flicker-fusion frequency. Его значение показывает то, насколько быстро глаза у животного способны обновлять изображение и обрабатывать зрительную информацию.

Человек способен улавливать частоту мерцания 60 Гц, т. е. обновление изображения 60 раз в сек., которой придерживаются при показе визуальной информации на телевизионном экране. Для млекопитающих (собак, кошек) это критическое значение равно 80 Гц, из-за чего им обычно не нравится просмотр телепередач.

Чем выше значение частоты мерцания, тем больше биологических преимуществ имеет животное. Поэтому для насекомых, у которых данное значение достигает 250 Гц, это проявляется в возможности более быстрой реакции на опасность. Ведь для человека, приближающегося к «добыче» с газетой в руках с намерением ее убить, движение кажется быстрым, но уникальное строение глаза позволяет ей улавливать даже мгновенные перемещения как бы в замедленном темпе.

По данным биолога К. Гили, такая высокая критическая частота мерцания у мух обусловлена их малыми размерами и быстрым обменом веществ.

Интересно!

Различие показателя CFF для различных видов позвоночных животных выглядит так: самый маленький 14 Гц – у угрей и черепах, 45 – у рептилий, по 60 – у людей и акул, у птиц и собак – 80, у сусликов – 120.

Приведенный анализ зрительных способностей позволяет понять, что мир глазами мухи выглядит как сложная система большого числа картинок по аналогии с небольшими видеокамерами, каждая из них передает насекомому информацию о небольшой части окружающего пространства. Собранное воедино изображение позволяет одним взглядом держать визуальную «круговую оборону» и мгновенно реагировать на приближение врагов. Исследования ученых таких зрительных способностей насекомых позволили заниматься разработками летающих роботов, у которых компьютерные системы контролируют положение в полете, имитируя зрение мух.

Наиболее сложными из органов чувств у насекомых являются органы зрения. Последние представлены образованиями нескольких типов, из которых важнейшие - сложные фасетированные глаза примерно такого же строения, как и сложные глаза ракообразных .

Глаза состоят из отдельных омматидиев ( рис. 337), количество которых определяется главным образом биологическими особенностями насекомых. Активные хищники и хорошие летуны, стрекозы обладают глазами, насчитывающими до 28 000 фасеток в каждом. В то же время муравьи (отр. Перепончатокрылые), особенно рабочие особи видов, обитающих под землей, имеют глаза, состоящие из 8 - 9 омматидиев.

Каждый омматидий представляет совершенную фотооптическую сенсиллу ( рис. 338). В его состав входят оптический аппарат, включающий роговицу, - прозрачный участок кутикулы над омматидием и так называемый хрустальный конус. В совокупности они выполняют роль линзы. Воспринимающий аппарат омматидия представлен несколькими (4 - 12) рецепторными клетками; специализация их зашла очень далеко, о чем говорит полная утрата ими жгутиковых структур. Собственно чувствительные части клеток - рабдомеры - представляют скопления плотно упакованных микроворсинок, располагаются в центре омматидия и тесно прилегают друг к другу. В совокупности они образуют светочувствительный элемент глаза - рабдом.

По краям омматидия залегают экранирующие пигментные клетки; последние довольно существенно отличаются у дневных и ночных насекомых. В первом случае пигмент в клетке неподвижен и постоянно разделяет соседние омматидии, не пропуская световые лучи из одного глазка в другой. Во втором случае пигмент способен перемещаться в клетках и скапливаться только в их верхней части. При этом лучи света попадают на чувствительные клетки не одного, а нескольких соседних омматидиев, что заметно (почти на два порядка) повышает общую чувствительность глаза. Естественно, что подобного рода адаптация возникла у сумеречных и ночных насекомых. От чувствительных клеток омматидия отходят нервные окончания образующие зрительный нерв.

Кроме сложных глаз многие насекомые имеют еще и простые глазки ( рис. 339), строение которых не соответствует строению одного омматидия. Светопреломляющий аппарат линзообразной формы, сразу же под ним расположен слой чувствительных клеток. Весь глазок одет чехлом из пигментных клеток. Оптические свойства простых глазков таковы, что воспринимать изображения предметов они не могут.

Личинки насекомых в большинстве случаев обладают только простыми глазками, отличающимися, однако, по строению от простых глазков взрослых стадий. Никакой преемственности между глазками взрослых особей и личинок не существует. Во время метаморфоза глаза личинок полностью резорбируются.

Зрительные способности насекомых совершенны. Однако структурные особенности сложного глаза предопределяют особый физиологический механизм зрения. Животные, имеющие сложные глаза, обладают "мозаичным" зрением. Малые размеры омматидиев и их обособленность друг от друга приводят к тому, что каждая группа чувствительных клеток воспринимает лишь небольшой и сравнительно узкий пучок лучей. Лучи, падающие под значительным углом, поглощаются экранирующими пигментными клетками и не достигают светочувствительных элементов омматидиев. Таким образом, схематично каждый омматидии получает изображение только одной небольшой точки объекта, находящегося в поле зрения всего глаза. Вследствие этого изображение складывается из стольких световых точек, отвечающих различным частям объекта, на сколько фасеток падают перпендикулярно лучи от объекта. Общая картина комбинируется как бы из множества мелких частичных изображений путем приложения их одного к другому.

Восприятие цвета насекомыми также отличается известным своеобразием. Представители высших групп Insecta имеют цветовое зрение, основанное на восприятии трех основных цветов, смешение которых и дает все красочное многообразие окружающего нас мира. Однако у насекомых по сравнению с человеком наблюдается сильный сдвиг в коротковолновую часть спектра: они воспринимают зелено - желтые, синие и ультрафиолетовые лучи. Последние для нас невидимы. Следовательно, цветовое восприятие мира насекомыми резко отличается от нашего.

Функции простых глазков взрослых насекомых требуют еще серьезного изучения. По - видимому, они в какой - то мере "дополняют" сложные глаза, влияя на активность поведения насекомых в разных условиях освещенности. Кроме того, было показано, что простые глазки наряду со сложными глазами способны воспринимать поляризованный свет.

Мухи – общее название насекомых подотрядов короткоусые круглошовные (Brachycera Сyclorrhapha) и короткоусые прямошовные (Brachycera Orthorrhapha) отряда двукрылых (Diptera).

Самый древний экземпляр нашли в Китайской республике . И возраст ее примерно 145 миллионов лет.

Мухи описание

Сколько живет муха?

Муха живёт от 1 до 2,5 месяца.

У всех мух есть общие признаки.

Строение мухи

Тело мухи

Массивное тело мух разделено на 3 отдела: голову, грудь и брюшко; всё тело густо покрыто волосками.

Длина тела самых маленьких мух:

  • Megaphragma caribea имеет длину всего 0,17 мм,
  • муха Alaptus magnanimus из семейства Myrmaridae имеет длину тела 0,21 мм.

Длина тела самых крупных в мире мух:

  • Mydas heros, обитающря в Южной Америке, составляет 5,5 - 6 см, а размах крыльев достигает 10 - 12 см;
  • тело новозеландской мухи Egsul singularis имеет длину до 5 см.

Глаза мухи

Сколько глаз у мухи?

По бокам головы находятся большие фасеточные глаза. Эти сложные глаза образованы особыми структурными единицами – омматидиями, роговичная линза которых имеет вид выпуклого шестигранника – фасетки (от французского facette – грань; отсюда название). Таких фасеток у мухи около 4000 в каждом глазу (в глазах других насекомых фасеток еще больше: у рабочей пчелы - 5000, у бабочек - до 17 000, у стрекоз - до 30 000). Каждая фасетка, глядя на объект, видит малую часть, а все они объединяются в единую картинку мозгом.

Составным глазом хорошо смотреть на близкие объекты - тогда их изображение получается очень четким.

Благодаря таким глазам муха имеет почти круговое поле зрения, то есть видит не только то, что находится впереди нее, но и то, что творится вокруг и сзади. Крупные фасеточные глаза позволяют мухе одновременно смотреть в разные стороны. Она различает разнообразные цвета, в том числе и ультрафиолет, находящийся в невидимой для человека части спектра.

У самок эти глаза разделены лбом. У самцов многих видов они сближены. За сложными глазами на средней линии головы, расположены 3 простых глазка. Таким образом, у мухи 5 глаз.

Чтобы различить очертания предмета, мухе требуется 0,1 сек., в то время как человеку – 0,05 сек.

Усики мухи

На голове мухи располагаются короткие трехчлениковые усики (антенны). Они состоят из 3 члеников, последний длиннее двух других. На спинной стороне третьего членика сидит голая или усаженная волосками щетинка.

Рот мухи сформирован из органа, который мы привыкли считать языком, но у этого насекомого все части рта собраны воедино в длинный хоботок, с помощью которого муха всасывает сок.

У большинства видов он лижущего типа. У кровососущих мух он сверлящего типа.

Хоботок у некровососущих мух втяжной, мягкий, заканчивается мясистыми сосательными лопастями и хитиновыми кольцами(псевдотрахеями). Он состоит из языка, а также верхней и нижней губ. Спереди к середине хоботка прикреплены одночлениковые щупики. Хоботок в спокойном состоянии втянут в углубление на нижней поверхности головы. Псевдотрахеи на лопастях хоботка сходятся к ротовому отверстию и служат для фильтрования жидкой пищи.

У кровососущих мух хоботок хитинизированный, твердый, не втягивается, а выступает вперед. Внутри хоботка находятся колющие части – надглоточник и подглоточник.

Крылья мухи

Большинство мух имеют пару так называемых настоящих крыльев, с помощью которых они могут летать. У мухи, кроме них, ещё есть пара задних, или ложных, крыльев, именуемых жужжальцами, которые помогают ей удерживать равновесие при полете. У некоторых видов мух, вопреки распространенному мнению, вообще нет крыльев.

Лапки мухи

Муха имеет три пары лапок. Лапка мухи состоит из пяти «суставов».

Почему муха ползает по потолку?

Последний сустав лапки имеет два коготка и тончайшие волоски, а также железы, выделяющие клейкое вещество, состоящее из смеси углеводов и жиров.

Такое строение и позволяет мухе спокойно ползать по потолку. Считается, что муха к поверхности «приклеивается» с помощью вещества, выделяемого лапками. Но тогда не совсем ясно, как именно она отрывает ноги от поверхности. По подсчетам ученых, ей потребовалось бы для этого значительное усилие. Изучая процесс ползанья мухи по различным потолкам, многие исследователи пришли к выводу, что муха все же без труда может отрывать приклеенные ноги, так как она может поворачивать коготки вокруг своей оси, или особым образом передвигать ногу.

В любом случае, в прикреплении мухи к потолку важную роль играют волоски на лапках, которые «цепляются» за малейшие неровности поверхности. Некоторые ученые считают, что муха обычно использует именно этот механизм, а клей пускает в ход лишь тогда, когда поверхность слишком гладкая.

Почему мухи трут свои лапки?

Когда муха ползает по различным поверхностям, на липких подушечках и щетинках ее лапок собирается грязь. Чтобы из-за этого сцепление лапок с поверхностью при ползании не ухудшалось, муха регулярно очищает все свои шесть лапок от налипших частичек мусора.

Лапки мухи – органы чувств

На кончиках лапок у мухи, кроме всего прочего, находятся коротенькие щетинки – органы осязания и вкуса. То есть муха вкус ощущает прежде всего... ногами, и только потом хоботком и сосательными лопастями! Причем муха анализирует пищу ногами в 100-200 раз лучше, чем человек языком.





error: Контент защищен !!