Что входит в состав жидкости для электронной сигареты, и безвреден ли он? Что такое жидкость для электронных сигарет? Виды электронных сигарет по составу жидкости

Жидкость принимает форму емкости, в которой она находится – одно из основных агрегатных состояний вещества наряду с газом и твердым телом. От газа жидкость отличается тем, что сохраняет свой объем, а от твердого тела тем, что не сохраняет форму.
Движение жидкостей и тел в жидкостях изучает раздел физики гидродинамика, строение и физические свойства жидкостей – физика жидкостей, составляющая частнина молекулярной физики.
Жидкость – конденсированный агрегатное состояние вещества, промежуточный между твердым и газообразным. Физическое тело, которому присуща:
Сохранения объема, плотность, показатель преломления, теплота плавления, вязкость – свойства, сближающие жидкости с твердыми телами, а несохранение формы – с газами. Для жидкостей характерно ближний порядок расположения молекул (относительная упорядоченность в расположении молекул ближайшего окружения произвольной молекулы, подобная порядка в кристаллических телах, но на расстоянии нескольких атомных диаметров эта упорядоченность нарушается). Взаимодействие между молекулами жидкости осуществляется Ван дер ваальсовыми и водородными связями. Жидкости, кроме рассолов и сжиженных металлов, плохие проводники электрического тока.
Текучесть жидкостей связана с периодическим "перепрыгиванием" их молекул из одного равновесного положения в другое. Большую часть времени отдельная молекула жидкости находится во временной ассоциации с соседними молекулами (близкая упорядоченность), где она осуществляет тепловые колебания. Иногда жидкостью в широком смысле слова называют и газ, при этом жидкость в узком смысле слова, которая удовлетворяет предыдущим двум условиям, называют капельной жидкостью.
Форма, которую принимает жидкость определяется формой емкости, в которой она находится. Частицы жидкости (обычно молекулы или группы молекул) могут свободно перемещаться по всему ее объему, но сила взаимного притяжения не позволяет частицам оставлять этот объем. Объем жидкости зависит от температуры и давления и является постоянным при данных условиях.
Если объем жидкости меньше объем емкости, в которой она содержится, то можно наблюдать поверхность жидкости. Поверхность должна качества эластичной мембраны с поверхностным натяжением, что позволяет формироваться каплям и пузырькам. Еще одним следствием действия поверхностного натяжения является капиллярность. Обычно жидкости не поддаются сжатию: например, чтобы заметно сжать воду, необходимо давление порядка гигапаскалей.
Жидкости в гравитационном поле создают давление, как на стенки и дно емкости, так и на любые тела внутри самой жидкости. Это давление действует во всех направлениях (Закон Паскаля) и растет с глубиной.
Если жидкость находится в состоянии покоя в однородном гравитационном поле, давление на любую точку определяется барометрической формуле:

Где:
Согласно этой формуле, давление на поверхности равна нулю, то есть считается, что сосуд достаточно широка, и поверхностное натяжение можно не учитывать.
Обычно жидкости расширяются при нагревании и сужаются при охлаждении. Вода между 0 и 4 ° C составляет один из немногих исключений.
Жидкость при температуре кипения превращается в газ, а при температуре замерзания – в твердое вещество. Но даже при температуре ниже температуры кипения, жидкость испаряется. Этот процесс продолжается, пока не будет достигнуто равновесия парциального давления паров жидкости и давления на поверхности жидкости. Именно поэтому ни одна жидкость не может существовать длительное время в вакууме.
Все жидкости можно разделить на чистые жидкости, состоящие из молекул одного вещества, и смеси, состоящие из молекул разного сорта. Различные жидкие компоненты смеси можно разделить с помощью фракцийонои дистилляции. Не все жидкости образуют однородную смесь, если поместить их в один сосуд. Часто жидкости не смешиваются, образуя поверхность между собой. В поле тяготения одна жидкость может плавать на поверхности другой.
Основном жидкости – изотропные вещества. Исключение составляют жидкие кристаллы, которые можно отнести к жидкостям учитывая свойство перетекать и занимать объем сосуда, но в которых хранятся свойственные кристаллическим телам анизотропные свойства.
В жидкости молекулы основном сохраняют свою целостность, хотя многие жидкостей являются растворителями, в которых молекулы до некоторой степени диссоциируют. При диссоциации в жидкостях образуются положительно и отрицательно заряженные ионы. Такие жидкости проводят электрический ток (см. Электролиты).
С микроскопической точки зрения жидкости отличаются от твердых тел отсутствием дальнего порядка, а от газов – ближним порядком. Это означает, что атомы и молекулы жидкостей основном находятся относительно своих соседей в тех же положениях, что и в твердом состоянии, однако этот порядок сохраняется для последующего слоя соседей хуже, а в дальнейшем совсем исчезает. Ближний порядок в жидкостях характеризуют радиальной корреляционной функцией.
Молекулы жидкостей основном колеблются вокруг временного положения равновесия, которое образуется благодаря взаимодействию с другими молекулами. Для жидкостей потенциальная энергия взаимодействия молекулы с соседями больше, чем кинетическая энергия теплового движения. Однако жидкости характеризуются также высоким коэффициентом самодиффузии – со временем каждая молекула удаляется от своего первоначального положения. Средний квадрат смещения от исходного положения молекулы пропорционален времени.
Благодаря взаимодействию молекулы в жидкости расположены не совсем хаотично. Для характеристики взаимного положения молекул используется понятие радиальной функции распределения, которая пропорциональна вероятности того, что на определенном расстоянии от какой произвольно-выбранной молекулы, находиться другая молекула. Для идеального газа радиальная функция распределения не зависит от расстояния и везде доривное единицы – движение молекул газа нескорельований, вероятность найти другую молекулу на определенном расстоянии одинакова. Для кристалла такая функция распределения состоит из выразительных максимумов, высота которых практически не уменьшается с расстоянием. Говорят, что в кристаллах сохраняется дальний порядок. В жидкостях радиальная функция распределения имеет несколько максимумов, высота которых уменьшается с расстоянием и через несколько средних межмолекулярных расстояний становится равной единице. Говорят, что в жидкостях сохраняется ближний порядок, и не сохраняется дальний порядок.
Экспериментально радиальную функцию распределения можно получить, проанализировав данные экспериментов с рассеяния рентгеновских лучей или нейтронов.
Малая сжимаемость жидкостей объясняется большим ростом сил отталкивания между частицами жидкости при незначительном приближении одной частицы к другой..
Все реальные жидкости в той или иной степени сжимаются, то есть под действием внешнего давления уменьшают свой объем. Сжимаемость – это способность жидкости изменять свой объем при изменении давления.
Сжимаемость жидкости определяется уравнением состояния и, как правило, имела по величине. Малая сжимаемость жидкости обусловлена тем, что жидкость характеризуется сильной молекулярной взаимодействием, а изменения величин давления в технических процессах сравнительно невелики.
Учитывая относительную малость давлений, встречающихся в реалиях допускают, что жидкость сжимается по закону Гука (по линейной зависимости). Степени сжимаемости жидкостей служит коэффициент объемного сжатия жидкости ? S, представляющий собой относительное уменьшение объема V при повышении давления p на единицу:

Знак «минус» в формуле означает, что при увеличении давления объем уменьшается. Если считать, что единицей давления является Паскаль, то коэффициент объемного сжатия будет измеряться в Па -1 (м 2 / Н).
Упругость – это способность жидкости восстанавливать свой объем после прекращения действия внешних силовых воздействий.
Для качественной характеристики упругих свойств используют понятие модуля объемной упругости К, который, по сути, является обратной величиной к коэффициенту сжимаемости, т.е. К = 1 / ? S. Например, для воды ? S = 0,51 · 10 -9 Па -1, что указывает на достаточно малую сжимаемость воды.
Гипотетическую жидкость, для которой ? S = 0, называют несжимаемой.
Во многих случаях с достаточной для практики точностью в гидравлике можно пренебречь сжимаемостью жидкости и сопротивлением растяжению и рассматривать жидкость как абсолютно несжимаема с отсутствием сопротивления растяжению.
В гидрогазодинамике встречается ряд задач, когда можно пренебречь и вязкостью, принимая, что касательные напряжения отсутствуют так, как это имеет место в жидкости, находящейся в состоянии покоя.
Описанная гипотетическая жидкость с перечисленными свойствами, а именно:
называется идеальной жидкостью.
Понятие «идеальная жидкость» впервые было введено Л. Эйлером.
Такая жидкость является предельной абстрактной моделью и лишь приближенно отражают объективно существующие свойства реальных жидкостей. Эта модель позволяет с достаточной точностью решать много очень важных вопросов гидрогазодинамики и способствует упрощению сложных задач.

В повседневной жизни мы постоянно сталкиваемся с тремя состояниями вещества - жидким, газообразным и твердым. О том, что представляют собой твердые тела и газы, мы имеем довольно ясное представление. Газ - совокупность молекул, которые движутся беспорядочно по всем направлениям. Все молекулы твердого тела сохраняют взаимное расположение. Они совершают только незначительные колебания.

Особенности жидкого вещества

А что же представляют собой жидкие вещества? Основной их особенностью является то, что, занимая промежуточное положение между кристаллами и газами, они сочетают в себе определенные свойства двух этих состояний. Например, для жидкостей, так же как и для твердых свойственно наличие объема. Однако в то же время жидкие вещества, так же как и газы, принимают форму сосуда, в котором находятся. Многие из нас полагают, что у них нет своей собственной формы. Однако это не так. Естественная форма любой жидкости - шар. Сила тяжести обычно мешает ей принять эту форму, поэтому жидкость либо принимает форму сосуда, либо растекается по поверхности тонким слоем.

По своим свойствам жидкое состояние вещества особенно сложно, что обусловлено промежуточным его положением. Оно начало изучаться еще со времен Архимеда (2200 лет назад). Однако анализ того, как ведут себя молекулы жидкого вещества, до сих пор является одной из наиболее трудных областей прикладной науки. Общепризнанной и вполне законченной теории жидкостей все еще нет. Однако кое-что об их поведении мы можем сказать вполне определенно.

Поведение молекул в жидкости

Жидкость - что-то такое, что может течь. Ближний порядок наблюдается в расположении ее частиц. Это означает, что расположение соседей, ближайших к ней, по отношению к любой частице является упорядоченным. Однако по мере того, как она удаляется от других, положение ее по отношению к ним делается все менее упорядоченным, а затем порядок и вовсе исчезает. Жидкие вещества состоят из молекул, которые движутся намного более свободно, чем в твердых телах (а в газах - еще свободнее). В течение определенного времени каждая из них устремляется то в одну сторону, то в другую, не удаляясь от своих соседей. Однако молекула жидкости время от времени вырывается из окружения. Она попадает в новое, переходя в другое место. Здесь снова в течение определенного времени она совершает подобные колебанию движения.

Вклад Я. И. Френкеля в изучение жидкостей

Я. И. Френкелю, советскому ученому, принадлежат большие заслуги в разработке целого ряда проблем, посвященных такой теме, как жидкие вещества. Химия сильно продвинулась вперед благодаря его открытиям. Он считал, что в жидкостях тепловое движение имеет следующий характер. В течение определенного времени каждая молекула колеблется около положения равновесия. Однако она меняет свое место время от времени, перемещаясь скачком на новое положение, которое от предыдущего отстоит на расстояние, составляющее примерно размеры самой этой молекулы. Другими словами, внутри жидкости молекулы перемещаются, но медленно. Часть времени они пребывают около определенных мест. Следовательно, движение их представляет собой что-то вроде смеси совершаемых в газе и в твердом теле движений. Колебания на одном месте через некоторое время сменяются свободным переходом с места на место.

Давление в жидкости

Некоторые свойства жидкого вещества нам известны благодаря постоянному взаимодействию с ними. Так, из опыта повседневности мы знаем о том, что оно действует на поверхность твердых тел, которые соприкасаются с ней, с известными силами. Они именуются силами

Например, приоткрывая отверстие водопроводного крана пальцем и включая воду, мы ощущаем, как она давит на палец. А пловец, который нырнул на большую глубину, не случайно испытывает боль в ушах. Она объясняется тем, что на барабанную перепонку уха воздействуют силы давления. Вода - жидкое вещество, поэтому она обладает всеми его свойствами. Для того чтобы измерить температуру воды на глубине моря, следует использовать очень прочные термометры, чтобы их не могло раздавить давление жидкости.

Это давление обусловлено сжатием, то есть изменением объема жидкости. Она обладает по отношению к этому изменению упругостью. Силы давления - это и есть силы упругости. Следовательно, если жидкость действует на тела, соприкасающиеся с ней, значит, она сжата. Поскольку плотность вещества при сжатии растет, можно считать, что жидкости по отношению к изменению плотности обладают упругостью.

Испарение

Продолжая рассматривать свойства жидкого вещества, переходим к испарению. Вблизи поверхности его, а также непосредственно в поверхностном слое действуют силы, обеспечивающие само существование этого слоя. Они не позволяют покидать объем жидкости молекулам, находящимся в нем. Однако некоторая их часть благодаря тепловому движению развивает довольно большие скорости, с помощью которых становится возможно преодолеть эти силы и покинуть жидкость. Мы называем это явление испарением. Его можно наблюдать при любой температуре воздуха, однако с ее увеличением интенсивность испарения возрастает.

Конденсация

Если молекулы, покинувшие жидкость, удаляются из пространства, находящегося вблизи ее поверхности, то вся она, в конце концов, испаряется. Если же покинувшие ее молекулы не удаляются, они формируют пар. Попавшие в область, находящуюся вблизи поверхности жидкости, молекулы пара втягиваются в нее Этот процесс получил название конденсации.

Следовательно, если молекулы не удаляются, со временем уменьшается скорость испарения. Если плотность пара в дальнейшем увеличивается, достигается ситуация, при которой количество молекул, покидающих за определенное время жидкость, будет равняться количеству молекул, которые возвращаются за это же время в нее. Так возникает состояние динамического равновесия. Пар, находящийся в нем, называется насыщенным. Давление и плотность его увеличиваются с повышением температуры. Чем она выше, тем большее количество молекул жидкости имеет достаточную для испарения энергию и тем большей плотностью должен обладать пар для того, чтобы с испарением могла сравняться конденсация.

Кипение

Когда в процессе нагревания жидких веществ достигается такая температура, при которой насыщенные пары имеют такое же давление, как и внешняя среда, устанавливается равновесие между насыщенным паром и жидкостью. Если жидкость сообщает дополнительное количество теплоты, сразу же происходит превращение в пар соответствующей массы жидкости. Этот процесс именуют кипением.

Кипение представляет собой интенсивное испарение жидкости. Оно происходит не только с поверхности, а касается всего ее объема. Внутри жидкости появляются пузырьки пара. Для того чтобы перейти в пар из жидкости, молекулам необходимо приобрести энергию. Она нужна для преодоления сил притяжения, благодаря которым они удерживаются в жидкости.

Температура кипения

Это та, при которой наблюдается равенство двух давлений - внешнего и насыщенных паров. Она увеличивается при увеличении давления и уменьшается при его уменьшении. Из-за того, что с высотой столба давление в жидкости меняется, кипение в ней происходит на различных уровнях при разной температуре. Только находящийся над поверхностью жидкости в процессе кипения, имеет определенную температуру. Она определяется лишь внешним давлением. Именно ее мы и имеем в виду, когда говорим о температуре кипения. Она отличается у разных жидкостей, что широко применяется в технике, в частности, при разгонке нефтепродуктов.

Скрытая теплота парообразования - это количество тепла, необходимое для того, чтобы превратить в пар изотермически определенное количество жидкости, если внешнее давление то же, что и давление насыщенных паров.

Свойства жидкостных пленок

Все мы знаем о том, как можно получить пену, растворив в воде мыло. Это не что иное, как множество пузырьков, которые ограничены состоящей из жидкости тончайшей пленкой. Однако из образующей пену жидкости можно получить также и отдельную пленку. Свойства ее очень интересны. Пленки эти могут быть очень тонкими: их толщина в самых тонких частях не превышает стотысячной доли миллиметра. Однако они порой очень устойчивы, несмотря на это. Мыльную пленку можно подвергать деформации и растяжению, сквозь нее может проходить струя воды, при этом не разрушая ее. Как же объяснить такую устойчивость? Для того чтобы появилась пленка, необходимо к чистой жидкости прибавить вещества, растворяющиеся в ней. Но не любые, а такие, которые значительно понижают поверхностное натяжение.

Жидкостные пленки в природе и технике

В технике и природе мы встречаемся главным образом не с отдельными пленками, а с пеной, которая представляет собой их совокупность. Ее нередко можно наблюдать в ручьях, где в спокойную воду падают небольшие струйки. Способность воды пениться в данном случае связана с наличием в ней органического вещества, которое выделяют корни растений. Это пример того, как пенятся природные жидкие вещества. А как же обстоит дело с техникой? При строительстве, например, используют специальные материалы, которые обладают ячеистой структурой, напоминающей пену. Они легки, дешевы, достаточно прочны, плохо проводят звуки и теплоту. Для получения их в специальные растворы добавляют способствующие пенообразованию вещества.

Вывод

Итак, мы узнали, какие вещества относятся к жидким, выяснили, что жидкость является промежуточным состоянием вещества между газообразным и твердым. Поэтому у нее есть свойства, характерные для того и другого. которые сегодня широко используются в технике и промышленности (например, жидкокристаллические дисплеи) являются ярким примером этого состояния вещества. В них объединены свойства твердых тел и жидкостей. Сложно представить, какие вещества жидкие изобретет в будущем наука. Однако ясно, что в этом состоянии вещества есть большой потенциал, который можно использовать во благо человечества.

Особый интерес к рассмотрению физико-химических процессов, протекающих в жидком состоянии, обусловлен тем, что сам человек состоит на 90% из воды, которая является самой распространенной на Земле жидкостью. Именно в ней происходят все жизненно важные процессы как в растительном, так и в животном мире. Поэтому для всех нас актуально изучать жидкое состояние вещества.

Современный мир вейперства все больше отвоевывает себе фаворитство, подминая под себя обычное курение. Электронные сигареты и были созданы, как помощь заядлому курильщику наконец-то расстаться со своей смертельной привычкой. И, хотя парение только относительно считается безопасным занятием и до конца еще не изучено, в сравнении с курением ЭС более приемлема в плане сохранения здоровья.

Для тех, кто решил приобщиться к миру вейперства и забыть о классическом курении, важно знать и разбираться в видах курительных гаджетов. Также необходимо владеть информацией, как выбрать жидкость для электронных сигарет, ведь именно включенная в их состав никотиновая добавка, дарящая необходимую крепость, и создает иллюзию привычной сигареты.

Чтобы грамотно подобрать жидкость для парения, нужно научиться в ней разбираться

Подобрать жидкость для электронных сигарет не просто, особенно тому, кто только начитает изучать мир парения. Видов замесов огромное множество, они различаются составом и крепостью. Поэтому новичку лучше начинать знакомство с вейперством с освоения разнообразия видов замеса .

Состав жижи для парения

Именно качество добавки, используемой в электронной сигарете, и выявляет степень вредоносности вейперства. Все виды замеса можно подразделить на две крупные группы:

  1. С никотином.
  2. Безникотиновые.

В любой из данных жидкостей может быть добавлен тот или иной ароматизатор. Производители предлагают любителям ароматного парения множество разнообразных вкусовых, ароматических сочетаний. Аромадобавки, в свою очередь, подразделяются на следующие группы:

  • на травах;
  • фруктовые;
  • алкогольные;
  • цветочные ароматы;
  • ягоды (домашние и лесные);
  • пищевые (молоко, мед, кола, шоколад).

Основа для замеса

Жидкость, куда входит никотин, различна по своему составу с безникотиновой жижей. Но нас интересует именно никотинсодержащая добавка. Ведь она и отличается крепостью в той или иной степени. Она включается в себя несколько основных ингредиентов.

Среди разнообразных добавок можно подобрать такие, которые максимально приближены к вкусу любимых сигарет

Никотин

Единственное составляющее, безопасность которого для человеческого самочувствия и здоровья весьма сомнительна . О губительных воздействиях никотина знает любой человек, но это ничуть не умаляет курильщиков обычных сигарет отказаться от своего пристрастия. Кстати, отличие ЭС в том, что путем постепенного снижения крепости замеса по никотиновому включению можно добиться полного отказа от никотиновой добавки, а, следовательно, и от самого вредного курения.

Пропиленгликоль

Данное соединение также не представляет угрозу для человеческого здоровья. Это вещество, оказавшись в организме, преобразуется в неопасную молочную кислоту. Пропиленгликоль широко применяется в различных видах промышленности. Его используют при производстве различных продуктов питания, при создании многих косметических препаратов.

Глицерин

Известная всем пищевая добавка. Глицерин входит в состав не только выпечки, кондитерских изделий. Его включают и в растворимое кофе, какао. Также это вещество широко используется и в медицинской промышленности. В частности, на его основе делают разнообразные медпрепараты, используемые для обработки раневых поверхностей.

Есть и многие лекарства, куда входит все та же глицериновая добавка. Для человека глицерин совершенно безвреден. В основной состав никотинсодержащей жидкости также может входить и ароматизатор. Эта добавка не является обязательной. Но ее присутствие улучшает вкусовое восприятие парения.

Из чего состоит основа жижи для парения

Электронный курительный гаджет представляет собой своеобразный ингалятор. Его главное отличие от классической сигареты в том, что ЭС вырабатывает пар, а не ядовитый табачный дым, переполненный канцерогенами.

Вдыхание такого ароматного насыщенного пара намного безопаснее, чем дымление сигаретами. Но главное, парение разрешает пользователя воспринимать все привычные при курении вкусы и ощущения. Также почувствовать и табачную крепость, именно такую, к которой человек уже привык.

Как определить крепость жидкости для электронных сигарет

Данный параметр будет интересовать, прежде всего, тех, кто желает расстаться с пагубной курительной привычкой при помощи электронного курительного гаджета. Крепость жидкости для вейперства определяется наличием и количеством в ней никотиновой добавки .

За основу показателей берется объем никотина, содержащегося в 1 мл жидкости для парения.

Изготовители выпускают в продажу различный объем растворов. Все жижи размещены в герметично закупоренные флакончики, размерами:

  • 10 мл;
  • 20 мл;
  • 30 мл;
  • 50 мл.

Максимальная степень насыщения замесов никотином также различна. Все зависит от брендов. Допустим, у известного производителя аксессуаров для вейперства Dekang замес идет следующих видов (по крепости): 24, 16 и 0,8 мг/мл. А у не менее известного JoyeTech – 16, 11 и 0,6 мг/мл.

Виды основы с никотином

Прежде чем выяснять, как же грамотно подобрать себе именно «свою» жидкость для парения, следует получить больше информации о том, какие же виды никотиносодержащих замесов бывают. Специалисты подразделяют их на три крупные группы.

Принцип действия электронной сигареты

Классическая

Наиболее приближенная к восприятию парения, как при обычном курении . Данные жидкости имеют наиболее выраженное вкусовое восприятие традиционной сигареты. Также у них выявляется оптимальный показатель ТХ («горловой удар»).

ТХ (или «тротхит») часто ощущает обычный курильщик. Этот эффект создает спазмирование горла при курении, в результате чего курильщика «пробивает» на сильный кашель.

Этот эффект высоко ценится вейперами, которые предпочитают получать удовольствие от парения, схожее с тем, что испытывает курильщик сигарет. При этом ЭС даря аналогичный эффект, не наносит этим существенный вред здоровью (в отличие от обычных сигарет).

Ice Blade

Или «ледяной клинок», как называют эту группу жидкостей для парения вейперы. Все замесы данной категории отличаются довольно резким вкусом и ярко выраженным тротхитом. Ice Blade не содержит в своем составе глицерина. Соответственно парение при использовании ЭС хоть и присутствует, но оно отличается повышенной сухостью. Обычно приверженцами замесов этой серии являются парильщики, обладающие индивидуальной непереносимостью глицериновой добавки.

Velvet Cloud

Или «бархатное облачко», как еще называют эту группу замесов. По своему восприятию жидкости категории Velvet Cloud являются полной противоположностью Ice Blade . На выходе парильщик получает много насыщенного пара с едва ощутимым вкусом.

По большей части жидкость данной категории используют любители эффектно пускать в окружающее пространство ароматные и насыщенные облака пара, окутывая окружающих настоящим паровым туманом. Состав этих замесов состоит из разнообразных доз дистиллированной воды и глицериновой добавки.

Для выбора наиболее подходящей крепости замеса для парения следует грамотно выбирать не только подходящую концентрацию никотина, но и ориентироваться в частоту (тип) вейперства. Очень важным становится такой существенный показатель гаджета, как напряжение батареи (аккумулятора).

Так как же определить правильно нужную крепость жидкости для парения? Опытные парильщики советуют воспользоваться следующей методикой:

  1. Зафиксировать показатель концентрации никотина в сигаретах, которые предпочитает курить человек.
  2. Перемножить данную цифру на то количество сигарет, которые в среднем выкуривает личность.

Итоговый результат поможет определить никотиновую дозу, к которой уже привык организм заядлого курильщика . Допустим, человек в сутки выкуривает порядка 15 сигарет, причем каждая из них содержит 0,6 мг никотина. Перемножив эти цифры, мы получим 9. Именно на эту цифру и следует обращаться внимание при выборе жидкости для парения.

Если при подсчете получилась промежуточный результат (который отсутствует в показателях никотиновой крепости у замесов), следует подбирать наиболее приближенные показатели. Например, для 9 (как в нашем примере) это будет 6-8 мг/мл. Именно такая жижа и принесет максимальный комфорт при парении курительного гаджета.

Классификация никотиновой добавки, определяющей крепость жидкости для вейперства, одинакова у всех производителей. Она следующая:

  1. 0 мг/мл: без содержания никотина.
  2. 6-8 мг/мл: малая концентрация. Эти жижи больше подходят лицам, не особенно увлеченных курением.
  3. 11-12 мг/мл: средняя. Она идеальна для тех, которые в «курительной» жизни отдавали предпочтение облегченным и легким сигаретам.
  4. 16-18 мг/мл: крепость ярко выражена. Такой вид замесов больше подходит для курильщиков, отличающихся выраженной зависимостью от никотина.
  5. 22-24 мг/мл: крепкая. Растворы, в которых никотиновая добавка сильно концентрирована. Такие замесы подходят для заядлых курильщиков. Для тех, кто увлекался курением на протяжении долгого времени и выкуривали по 1,5-2 пачки в сутки.

Если в задачах курильщика стоит расставание со смертельной привычкой, переход на парение следует начинать именно с подходящим по крепости замесом. Затем постепенно следует снижать концентрированность смесей, со временем подводя себя к использованию жидкостей без никотиновой добавки. Ну а идеальным итогом станет расставание и с самой электронной сигаретой.

Мы привыкли думать, что жидкости не имеют никакой собственной формы. Это неверно. Естественная форма всякой жидкости – шар. Обычно сила тяжести мешает жидкости принимать эту форму, и жидкость либо растекается тонким слоем, если разлита без сосуда, либо же принимает форму сосуда, если налита в него. Находясь внутри другой жидкости такого же удельного веса, жидкость по закону Архимеда “теряет” свой вес: она словно ничего не весит, тяжесть на нее не действует – и тогда жидкость принимает свою естественную, шарообразную форму.
Прованское масло плавает в воде, но тонет в спирте. Можно поэтому приготовить такую смесь из воды и спирта, в которой масло не тонет и не всплывает. Введя в эту смесь немного масла посредством шприца, мы увидим странную вещь: масло собирается в большую круглую каплю, которая не вплывает и не тонет, а висит неподвижно [Чтобы форма шара не казалась искаженной, нужно производить опыт в сосуде с плоскими стенками (или в сосуде любой формы, но поставленном внутри наполненного водой сосуда с плоскими стенками)].

Рис. Масло внутри сосуда с разбавленным спиртом собирается в шар, который не тонет и не всплывает (опыт Плато).

Рис. Если масляный шар в спирте быстро вращать при помощи воткнутого в него стерженька, от шара отделяется кольцо.

Опыт надо проделывать терпеливо и осторожно, иначе получится не одна большая капля, а несколько шариков поменьше. Но и в таком виде опыт достаточно интересен.
Это, однако, еще не все. Пропустив через центр жидкого масляного шара длинный деревянный стерженек или проволоку, вращают их. Масляный шар принимает участие в этом вращении. (Опыт удается лучше, если насадить на ось небольшой смоченный маслом картонный кружочек, который весь оставался бы внутри шара.) Под влиянием вращения шар начинает сначала сплющиваться, а затем через несколько секунд отделяет от себя кольцо. Разрываясь на части, кольцо это образует не бесформенные куски, а новые шарообразные капли, которые продолжают кружиться около центрального шара.

Рис. Упрощение опыта Плато.

Впервые этот поучительный опыт произвел бельгийский физик Плато. Здесь описан опыт Плато в его классическом виде. Гораздо легче и не менее поучительно произвести его в ином виде. Маленький стакан споласкивают водой, наполняют прованским маслом и ставят на дно большого стакана; в последний наливают осторожно столько спирта, чтобы маленький стакан был весь в него погружен. Затем по стенке большого стакана из ложечки осторожно доливают понемногу воду. Поверхность масла в маленьком стакане становится выпуклой; выпуклость постепенно возрастает и при достаточном количестве подлитой воды поднимается из стакана, образуя шар довольно значительных размеров, висящий внутри смеси спирта и воды (рис. 58).
За неимением спирта можно проделать этот опыт с анилином – жидкостью, которая при обыкновенной температуре тяжелее воды, а при 75 – 85 °С легче ее. Нагревая воду, мы можем, следовательно, заставить анилин плавать внутри нее, причем он принимает форму большой шарообразной капли. При комнатной температуре капля анилина уравновешивается в растворе соли [Из других жидкостей удобен ортотолуидин – темно-красная жидкость; при 24° она имеет такую же плотность, как и соленая вода, в которую и погружают ортотолуидин].

Однажды я провел эксперимент с ничего не подозревающим и не ожидающим от меня товарищем. Я замешал новый вкус жидкости и дал ему попробовать. «Вкусно, но ничего удивительного»,-сказал он. Через некоторое время я угостил его той же самой жидкостью, со словами:»Попробуй, отличный вкус!». И ему этот вкус тоже очень понравился. Разница была лишь в том, что это была та же самая жидкость. Разницу во вкусе он почувствовал лишь потому, что наше восприятие часто затуманивает наше суждение и объективность.

Мнения вейперов насчет настоя жидкостей разделились. Кто-то считает, что это пустая трата времени, а кто-то говорит что настаивание имеет огромное значение. Попытаемся разобраться, в чем же дело? В восприятии вкуса или же в действительной разнице во вкусе после настоя? Мы проведем тестирование вслепую, и решим эти вопросы раз и навсегда. Но для начала, давайте разберемся, что же такое настаивание жидкостей, какие процессы протекают в этот период, и рассмотрим несколько методик.

  • Настаивание . Что такое настаивание жидкостей? Это метод улучшения вкуса. Обычно настаивают жидкость в статичном состоянии, иногда встряхивают и иногда взбалтывают (в зависимости от метода), чтобы жидкость вступала во взаимодействие с воздухом. Это как с хорошим вином — чем старше тем вкуснее. Далее в статье, мы рассмотрим ряд приёмов, направленных на ускорение времени настаивания жидкостей.
  • Состав и сырьё . Обычно их состав стандартен: пропиленгликоль, растительный глицерин, никотин, пищевые ароматизаторы. Иногда добавляют дистиллированную воду, алкоголь. Идея в настаивании состоит в лучшем смешивании разных свойств этих веществ. Это особенно важно, если Вы производитель и закупаете партию сырья для производства жидкостей, сырье как правило представляет собой смесь ароматизаторов и компонентов, без ярко выраженного вкуса.
  • Тестирование . Важным шагом в настаивании жидкостей является пробование жидкости. Во время настоя пробуйте, что получается, какие вкусы раскрываются, записывайте время настоя во время тестирования и со временем поймете когда жидкость настоялась как надо, и будете знать четкое время, необходимое для этого.
  • Контакт с воздухом . Не забывайте, что жидкости могут выдыхаться и контактировать с воздухом каждый раз когда открывается емкость с жидкостями. В каких то случаях это изменит цвет, а в каких то заберет вкус.
  • Реакция Майара . Химическая реакция между аминокислотами и сахарами, изменяющая цвет жидкостей. Наподобие как запекается и темнеет пирог, или зарумянивается пицца, темнеют стейки. Некоторые производители уверены, что именно реакция Майара лежит в основе изменения цвета жидкостей. На это у нас есть отдельное мнение, о нем чуть позже.

А теперь проведем эксперимент

Без сомнений, настаивание жидкостей изменяет их характеристики, зачастую меняется даже цвет. Но что же происходит со вкусом?





error: Контент защищен !!