Липидный обмен биохимия. Что такое липидный обмен? Причины нарушения и методы восстановления жирового баланса. Влияние лекарств на липидный обмен

Липидный обмен, в отличие от белкового и углеводного, многообразен: жиры синтезируются не только из жирных соединений, но и из белков и сахаров. Поступают они и с пищей, расщепляясь в верхнем отделе желудочно-кишечного тракта и всасываясь в кровь. Уровень липидов постоянно меняется и зависит от многих причин. Обмен жиров в организме человека может с легкостью нарушиться, а как восстановить, или лечить нарушенный баланс знает только специалист.

Разберемся как же происходит метаболизм липидов в организме, что происходит при липидном дисбалансе и как распознать его признаки?

Учебники для студентов медицинских вузов называют липидный обмен совокупностью процессов превращения жиров в клетках организма и во внеклеточной среде. По сути – это все изменения жиросодержащих соединений при взаимодействии с другими, в результате чего реализуются функции липидов в организме человека:

  • обеспечение энергией (расщепление жиров происходит с отрывом атомов водорода, соединяющихся с атомами кислорода, что приводит к образованию воды с выделением большого количества тепла);
  • запас этой энергии (в виде отложения липидов в жировых депо – подкожной и висцеральной клетчатке, митохондриях клеток);
  • стабилизация и регенерация цитоплазматических мембран (жиры входят в состав всех клеточных оболочек);
  • участие в синтезе биологически активных веществ (стероидных гормонов, простагландинов, витаминов A и D), а также сигнальных молекул, передающих информацию от клетки к клетке;
  • теплоизоляция и амортизация внутренних органов;
  • предотвращение от спадения легочной ткани (некоторые липиды являются составной частью сурфактанта);
  • участие в клеточном ответе на окислительный стресс, обусловленный действием свободных радикалов, и предотвращение развития связанных с ним патологий;
  • защита эритроцитов от гемотропных ядов;
  • распознавание антигенов (выступающие отростки липидных комплексов цитоплазматических мембран выполняют роль рецепторов, главная из которых – агглютинация при несовместимости крови по системе АВ0);
  • участие в процессе переваривания поступающих с пищей жиров;
  • образование защитной пленки на поверхности кожи, предохраняющей ее от пересыхания;
  • синтез основного гормона, регулирующего собственный (жировой) обмен (этим веществом является лептин).

Коль зашла речь о гормональной регуляции, то стоит упомянуть и другие биологически активные соединения, влияющие на липидный баланс: инсулин, тиреотропин, соматотропин, кортизол, тестостерон. Они синтезируются поджелудочной и щитовидной железами, гипофизом, корой надпочечников, мужскими семенниками и женскими яичниками. Инсулин способствует образованию жира, остальные гормоны, наоборот, ускоряют его метаболизм.

Жиры , содержащиеся во всех живых клетках, делят на несколько групп :

  • жирные кислоты, альдегиды, спирты;
  • моно-, ди- и триглицериды;
  • глико-, фосфолипиды и фосфогликолипиды;
  • воски;
  • сфинголипиды;
  • эфиры стеринов (в том числе холестерина, по химическому составу являющегося спиртом, но играющего огромную роль в нарушениях липидного обмена).

Есть еще несколько узко специфических жиров, и все они являются участниками обменных процессов. В нейтральном состоянии липиды встречаются только внутри клеток, в кровеносном русле их циркуляция невозможна из-за большой вероятности развития жировой закупорки мелких сосудов. Поэтому природа предусмотрела их соединение с белками-транспортировщиками . Такие сложные соединения названы липопротеидами . Их анаболизм происходит в основном в печени и в эпителии тонкого кишечника.

Чтобы определить состояние липидного обмена проводят анализ крови на липидный профиль . Называется он липидограммой, и включает показатели разных фракций липопротеинов (высокой , низкой и очень низкой плотности), всего содержащегося в них холестерина и триглицеридов . Нормы показателей липидного обмена изменяются в зависимости от пола и возраста, и сведены в единую таблицу (для женщин и мужчин), пользующуюся популярностью у врачей.

Какие процессы включает метаболизм липидов

Обмен липидов проходит определенную последовательность этапов:

  1. переваривание жиров, поступивших в пищеварительный тракт;
  2. соединение с транспортными белками и всасывание в плазму крови;
  3. синтез собственных липидов и аналогичное связывание с белками;
  4. транспорт жиробелковых комплексов к органам через кровеносные и лимфатические магистрали;
  5. метаболизм в крови и внутри клеток;
  6. транспорт продуктов распада к выводящим органам;
  7. выведение конечных продуктов обмена.

Биохимия всех этих процессов очень сложна, но главное – понять суть происходящего. Если описывать их кратко, то липидный обмен выглядит так: соединившись с переносчиками, липопротеиды следуют к месту назначения, фиксируются на специфичных к ним рецепторах клеток, отдают необходимые жиры, тем самым увеличивая свою плотность.

Далее большая часть «обнищавших» соединений возвращается в печень, преобразуется в желчные кислоты и выводится в кишечник. В меньшей степени продукты липидного метаболизма непосредственно из клеток почек и легких выталкиваются во внешнюю среду.

Учитывая представленную схему жирового обмена, становится понятна главенствующая роль печени в нем.

Роль печени в обмене жиров

Кроме того, что печень сама синтезирует основные компоненты липидного обмена, именно в нее в первую очередь поступают всосавшиеся в кишечнике жиры. Это объясняется строением кровеносной системы. Природа не зря придумала систему воротной вены – такой себе «таможенный контроль»: все, поступившее извне, проходит «дресс-код» под наблюдением печеночных клеток. Они инактивируют вредные вещества самостоятельно или инициируют процесс их уничтожения другими клетками. А все полезное – запускают в нижнюю полую вену, т. е. в общий кровоток.

Жиры связываются с белками для транспортировки. Сначала жиробелковые комплексы содержат очень мало белка, обеспечивающего плотность соединениям. Это липопротеиды очень низкой плотности . Затем присоединяется еще немного белка, и плотность их растет (липопротеиды промежуточной плотности). При очередном связывании белковых молекул образуются липопротеины низкой плотности . Это именно те соединения, которые являются главными переносчиками жиров к клеткам организма.

Перечисленные вещества все поступают в кровь, но ЛПНП составляют основную их часть. А значит, концентрация низкоплотных липопротеидов самая большая, по сравнению с другими жиробелковыми комплексами. Большая концентрация в крови и липопротеидов высокой плотности – отработанных и «обнищавших». Снова попав в печень, они отщепляют липиды, которые связываются с первичными желчными кислотами и аминокислотами. Образованные липидные соединения уже являются составной частью желчи.

Желчь резервируется в желчном пузыре, а при поступлении пищевого комка в кишечник выбрасывается через желчные пути в просвет пищеварительного канала. Там липиды способствуют разложению еды на всасываемые компоненты. Неиспользованные в процессе переработки пищи жиры снова поступают в кровоток и отправляются в печень. И все начинается по-новому.

Процессы синтеза, распада и выведения происходят постоянно, причем показатели липидного обмена все время колеблются. И зависят они от сезона, времени суток, давности приема пищи и количества физических нагрузок. И хорошо, если эти изменения не выходят за пределы нормы. А что произойдет, если обмен липидов нарушится, и его маркеры окажутся за границами нормального диапазона? В каких ситуациях такое случается?

Нарушение липидного обмена: причины и последствия

Сбой жирового обмена, может возникнуть при:

  • расстройствах всасывания;
  • неадекватном выведении;
  • нарушении процессов транспортировки;
  • избыточном накоплении липидов в структурах, не относящихся к жировой ткани;
  • нарушении промежуточного липидного обмена;
  • чрезмерном или недостаточном отложении в собственно жировой клетчатке.

Патофизиология этих нарушений разная, но приводят они к одному результату: дислипидемии.

Нарушение всасывания и повышенное выведение

Ухудшение усвоения липидов развивается при малом количестве фермента липазы, в норме расщепляющей жиры до всасываемых компонентов, или ее недостаточной активации. Такие состояния являются признаками панкреатита, панкреонекроза, склероза поджелудочной железы, патологии печени, желчного пузыря и выводных желчных путей, поражения эпителиальной выстилки кишечника, приема некоторых антибактериальных препаратов.

Плохо всасываются жиры и в результате взаимодействия с кальцием и магнием еще в просвете желудочно-кишечного тракта, в результате чего образуются нерастворимые и не всасываемые соединения. Следовательно, пища богатая на эти минералы ухудшает усвоение липидов. Не всосавшиеся жиры в избытке выводятся с каловыми массами, которые приобретают жирный характер. Симптом называется «стеаторея».

Нарушение транспортировки

Транспорт жирных соединений невозможен без белков-переносчиков. Поэтому болезни, в основном наследственные, связанные с нарушением образования или с полным их отсутствием сопровождаются расстройством липидного обмена. К таким заболеваниям относятся абеталипопротеидемия, гипобеталипопротеидемия и анальфапротеидемия. Не последнюю роль играют и патологические процессы в печени – основном белоксинтезирующем органе.

Накопление жира в узкоспециализированных клетках и между ними

Образование жировых капель внутри паренхиматозных клеток развивается в связи с усиленным липогенезом, замедлением окисления, повышенным липолизом, замедленном выведении, недостатком транспортных белков. Эти факторы ведут к нарушению выведения жира из клеток и способствуют их накоплению. Жировые капли постепенно растут в размерах и в результате полностью оттесняют все органеллы к периферии. Клетки теряют свою специфичность, перестают выполнять свои функции, и по внешнему виду не отличаются от жировых. При далеко зашедшей дистрофии возникают симптомы недостаточности пораженных органов.

Накопление жировых отложений происходит и между клетками – в строме. В этом случае нарушение липидного обмена приводит к постепенному сдавлению паренхимы, и, снова таки, – к нарастанию функциональной недостаточности специализированных тканей.

Нарушение промежуточного обмена

Промежуточными соединениями в липидном обмене являются кетоновые тела. Они конкурируют в процессах выработки энергии с глюкозой. И если сахара в крови мало, то для обеспечения жизнедеятельности организма усиливается производство кетоновых тел. Повышенное их содержание в крови называется кетоацидозом. Он бывает физиологическим (после тяжелой физической или психоэмоциональной нагрузки, на поздних сроках беременности) и патологическим (связанным с заболеваниями).

  1. Физиологический кетоацидоз не достигает высоких цифр и носит кратковременный характер, так как кетоновые тела быстро «сгорают», отдавая необходимую организму энергию.
  2. Патологический кетоацидоз развивается, когда печень не расходует жирные кислоты только на образование триглицеридов, а использует их и для синтеза кетоновых тел (при голодании, сахарном диабете). Кетоны оказывают выраженный токсический эффект, и при высоком кетоацидозе угрожают жизни.

Нарушение липидного обмена в собственно жировой ткани

В адипозоцитах происходят как процессы липогенеза, так и липолиза. В норме они уравновешены, благодаря гормональной и нервной регуляции. Патологические изменения зависят от того, какой из процессов преобладает: при повышенном липогенезе и сниженной активности липопротеинлипазы развивается тучность (ожирение 1 степени), а затем и более выраженное увеличение массы тела, а при ускоренном липолизе – похудение с переходом в кахексию (если не провести своевременную коррекцию).

Кроме того, может измениться не только объем жировых клеток, но и их количество (под влиянием генетических факторов или факторов морфогенеза – во время раннего детства, полового созревания, беременности, в предклимактерическом периоде). Но на каком бы этапе липидного обмена не произошло нарушение, дислипидемия может проявиться или снижением уровня жиров, или повышением.

  1. Гиполипидемия, если только она не наследственная, длительное время клинически не распознается. И разобраться в происходящем поможет только анализ крови с определением концентрации показателей липидного профиля: они будут снижены.
  2. Гиперлипидемия, носящая постоянный характер, приводит к увеличению массы тела, гипертонии, желчнокаменной болезни, атеросклерозу аорты и ее ветвей, сосудов сердца (ИБС) и головного мозга. В этом случае в крови будут повышены практически все показатели липидного обмена (кроме ЛПВП).

Как восстановить липидный обмен в организме

Чтобы начать что-то восстанавливать, необходимо знать, что нарушено . Поэтому сначала проводят диагностику, а затем уже и коррекцию. Диагностика заключается в сдаче анализа крови на липидограмму. От нее зависит весь остальной комплекс обследования: если соотношение липопротеидов и триглицеридов в крови нарушено, нужно устранять непосредственную причину.

  1. При патологии желудочно-кишечного тракта добиваются ремиссии хронических и излечения острых заболеваний желудка, кишечника, печени, желчевыводящих протоков, поджелудочной железы.
  2. При сахарном диабете проводят коррекцию глюкозного профиля.
  3. Гормональные нарушения при заболеваниях щитовидной железы выравнивают заместительной терапией.
  4. Основой терапии наследственных дислипидемий являются симптоматические препараты, в первую очередь – жирорастворимые витамины.
  5. При ожирении пытаются ускорить основной обмен в организме человека с помощью продуктов питания, правильного питьевого режима и физической нагрузки.

В связи с этим регуляция обмена жиросодержащих веществ осуществляется не одним узким специалистом, а комплексно: терапевтом, гастроэнтерологом, кардиологом, эндокринологом и, обязательно – диетологом. Совместно они попытаются нормализовать липидный обмен народными средствами и специфической группой медикаментов: статинами, ингибиторами абсорбции холестерина, фибратами , секвестрантами желчных кислот, витаминами.

Содержание

Жиры, белки и углеводы, поступающие с пищей, перерабатываются на мелкие составляющие, которые впоследствии принимают участие в обмене веществ, скапливаются в организме или идут на выработку энергии, необходимой для нормальной жизнедеятельности. Нарушение баланса липидного преобразования жиров чревато развитием серьезных осложнений и может являться одной из причин таких заболеваний, как атеросклероз, сахарный диабет, инфаркт миокарда.

Общие характеристики липидного обмена

Суточная потребность человека в жирах составляет около 70-80 грамм. Большую часть веществ организм получает вместе с пищей (экзогенный путь), остальное вырабатывается печенью (эндогенный путь). Липидный обмен – это процесс, посредством которого жиры расщепляются на кислоты, необходимые для генерирования энергии или формирования запасов ее источника для использования в дальнейшем.

Жирные кислоты, также известные как липиды, постоянно циркулируют в организме человека. По своему строению, принципу воздействия данные вещества делятся на несколько групп:

  • Триацилглицеролы – составляют основную массу липидов в организме. Они защищают подкожные ткани и внутренние органы, выступая в качестве теплоизоляторов и хранителей тепла. Триацилглицеролы всегда откладываются организмом про запас, в качестве альтернативного источника энергии, в случае нехватки запасов гликогена (формы углеводов, полученной путем переработки глюкозы).
  • Фосфолипиды – обширный класс липидов, получивших свое название от фосфорной кислоты. Данные вещества формируют основу клеточных мембран, принимают участие в метаболических процессах организма.
  • Стероиды или холестеролы – являются важным компонентом клеточных мембран, участвуют в энергетическом, водно-солевом обмене, регулируют половые функции.

Разнообразие и уровень содержания определенных видов липидов в клетках организма регулируется липидным обменом, включающим следующие этапы:

  • Расщепление, переваривание и всасывание веществ в пищеварительном тракте (липолиз). Данные процессы берут свое начало в ротовой полости, где жиры, поступившие с пищей, под действием липазы языка распадаются на более простые соединения с образованием жирных кислот, моноацилглицеролов и глицерола. По сути, мельчайшие капельки жира под действием особых ферментов превращаются в тонкую эмульсию, которая характеризуется низшей плотностью и увеличенной площадью всасывания.
  • Транспорт жирных кислот из кишечника в лимфатическую систему. После первоначальной обработки все вещества поступают в кишечник, где под действием желчных кислот и ферментов распадаются на фосфолипиды. Новые вещества легко проникают через стенки кишечника в лимфатическую систему. Здесь они вновь превращаются в триацилглицеролы, связываются с хиломикронами (молекулами, схожими с холестерином и более известными, как липопротеины) попадают в кровь. Липопротеины взаимодействуют с рецепторами клеток, которые расщепляют данные соединения и забирают себе жирные кислоты, необходимые для выработки энергии и строительства мембраны.
  • Взаимопревращение (катаболизм) жирных кислот и кетоновых тел. По сути, это завершающий этап липидного обмена, во время которого часть триацилглицеролов вместе с кровью транспортируется в печень, где происходит их превращение в ацетил коэнзим А (сокращенно ацетил КоА). Если в результате синтеза жирных кислот в печени ацетил КоА выделился с избытком, часть его трансформируется в кетоновые тела.
  • Липогенез. Если человек ведет малоподвижный образ жизни, при этом получает жиры с избытком, часть продуктов распада липидного обмена откладывается в виде адипоцитов (жировой ткани). Они будут использованы организмы в случае нехватки энергии или когда потребуется дополнительный материал на строительство новых мембран.

Признаки нарушения липидного обмена

Врожденная или приобретенная патология обмена жиров в медицине называется дислипидемией (код МКБ Е78). Часто такое заболевание сопровождается рядом симптомов напоминающих атеросклероз (хроническое заболевание артерий, характеризующееся снижением их тонуса и эластичности), нефроз (поражение почечных канальцев), заболевания сердечно-сосудистой иди эндокринной системы. При высоком уровне триглицеридов возможно появление синдрома острого панкреатита. Характерными клиническими проявлениями нарушения липидного обмена являются:

  • Ксантомы – плотные узелковые образования, наполненные холестерином. Покрывают сухожилия, живот, туловище ступни.
  • Ксантелазмы – отложения холестерина под кожей век. Жировые отложения данного типа локализуются в уголках глаз.
  • Липоидная дуга – белая или серовато-бела полоска, обрамляющая роговицу глаза. Чаще симптом появляется у пациентов после 50 лет с наследственной предрасположенностью к дислипидемии.
  • Гепатоспленомегалия – состояние организма, при котором одновременно увеличиваются в размерах печень и селезенка.
  • Атерома кожи – киста сальных желез, возникающая в результате закупорки сальных протоков. Одним из факторов развития патологии является нарушение обмена фосфолипидов.
  • Абдоминальное ожирение – избыточное скопление жировой ткани в верхней части туловища или на животе.
  • Гипергликемия – состояние, при котором повышается уровень глюкозы в крови.
  • Артериальная гипертензия – стойкое повышение артериального давления свыше 140/90 мм рт. ст.

Все перечисленные выше симптомы характерны для повышенного уровня липидов в организме. При этом бывают ситуации, когда количество жирных кислот находится ниже нормы . В таких случаях характерными симптомами будут:

  • резкое и беспричинное снижение массы тела, вплоть до полного истощения (анорексии);
  • выпадение волос, ломкость и расслоение ногтей;
  • нарушение менструального цикла (задержка или полное отсутствие месячных), репродуктивной системы у женщин;
  • признаки нефроза почек – потемнение мочи, боли в нижней части спины, снижение объема суточной урины, формирование отеков;
  • экземы, гнойнички или иные воспаления кожных покровов.

Причины

Метаболизм липидов может быть нарушен в результате некоторых хронических заболеваний или быть врожденным. По механизму образования патологического процесса выделяют две группы возможных причин дислипидемии:

  • Первичные – получение по наследству от одного или обоих родителей модифицированного гена . Различают две формы генетических нарушений:
  1. гиперхолестеринемия – нарушение холестеринового обмена;
  2. гипертриглицеридемия – повышенное содержание триглицеридов в плазме крови, взятой натощак.
  • Вторичные – заболевание развивается, как осложнение других патологий. Нарушение липидного обмена могут спровоцировать:
  1. гипотиреоз – снижение функций щитовидной железы;
  2. сахарный диабет – заболевание, при котором нарушается всасывание глюкозы или выработка инсулина;
  3. обструктивные заболевания печени – болезни, при которых происходит нарушение оттока желчи (хронический холелитиаз (образование камней в желчном пузыре), первичный билиарный цирроз (аутоиммунное заболевание, при котором постепенно разрушаются внутрипеченочные желчевыводящие протоки).
  4. атеросклероз;
  5. ожирение;
  6. бесконтрольный прием лекарственных препаратов – тиазидных диуретиков, Циклоспорина, Амиодарона, некоторых гормональных контрацептивов;
  7. хроническая почечная недостаточность – синдром нарушения всех функций почек;
  8. нефротический синдром – симптомокомплекс, характеризующийся массивной протеинурией (выделением белка вместе с мочой), генерализованными отеками;
  9. лучевая болезнь – патология, возникающая при длительном воздействии на организм человека разных ионизирующих излучений;
  10. панкреатит – воспаление поджелудочной железы;
  11. табакокурение, злоупотребление алкоголем.

В развитии и прогрессировании нарушений липидного обмена большую роль играют предрасполагающие факторы. К ним относятся:

  • гиподинамия (малоподвижный образ жизни);
  • постменопауза;
  • злоупотребление жирной, богатой холестерином пищей;
  • артериальная гипертензия;
  • мужской пол и возраст старше 45 лет;
  • синдром Кушинга – избыточное образование гормонов коры надпочечников;
  • ишемический инсульт в анамнезе (гибель участка мозга из-за нарушения кровообращения);
  • инфаркт миокарда (гибель части мышцы сердца из-за прекращения поступления крови к ней);
  • генетическая предрасположенность;
  • беременность;
  • диагностированные раньше заболевания эндокринной системы, печени или почек.

Классификация

В зависимости от механизма развития, различают несколько видов нарушения липидного баланса:

  • Первичный (врожденный) – означает, что патология носит наследственный характер. Клиницисты подразделяют этот вид нарушения липидного обмена на три формы:
  1. моногенную – когда патологию спровоцировали генные мутации;
  2. гомозиготную – редкая форма, означает, что патологический ген ребенок получил от обоих родителей;
  3. гетерозиготную – получение дефектного гена от отца или матери.
  • Вторичный (приобретенный) – развивается как следствие других заболеваний.
  • Алиментарный – связанный с особенностями питания человека. Различают две формы патологии:
  1. транзиторную – возникает нерегулярно, чаще на следующие сутки после употребления большого количества жирной пищи;
  2. постоянную – отмечается при регулярном употреблении продуктов с высоким содержанием жиров.

Классификация дислипидемий по Фредриксону не получила широкого распространения среди врачей, но используется Всемирной Организацией Здравоохранения. Главным фактором, по которому нарушение липидного обмена разделилось на классы, является тип повышенного липида:

  • Заболевание первого типа – возникает при генетических нарушениях. В крови пациента наблюдается повышенное содержание хиломикронов.
  • Нарушение липидного обмена второго типа – наследственная патология, характеризующаяся гиперхолестеринемией (подтип А) или комбинированной гиперлипидемией (подтип В).
  • Третьего типа – патологическое состояние, при котором наблюдается отсутствие в крови пациента хиломикронов и присутствие липопротеидов низкой плотности.
  • Четвертый тип нарушений – гиперлипидемия (аномально повышенный уровень липидов) эндогенного происхождения (выработанных печенью).
  • Пятый тип – гипертриглицеридемия, характеризующаяся повышенным содержанием триглицеридов в плазме крови.

Медики обобщили данную классификацию, сократив ее всего до двух пунктов. К ним относятся:

  • чистая или изолированная гиперхолестеринемия – состояние, характеризующееся повышением уровня холестерина;
  • комбинированная или смешанная гиперлипидемия – патология, при которой повышается уровень как триглицеридов, так и холестерина и других составляющих жирных кислот.

Возможные осложнения

Нарушение липидного обмена может привести к возникновению ряда неприятных симптомов, сильному снижению веса, ухудшению течения хронических заболеваний. Кроме того, данная патология при метаболическом синдроме может стать причиной развития таких заболеваний и состояний:

  • атеросклероз, который поражает сосуды сердца, почки, головной мозг, сердце;
  • сужение просвета кровеносных артерий;
  • формирование тромбов и эмболов;
  • возникновение аневризмы (расслоения сосудов) или разрыв артерий.

Диагностика

Для постановки первоначального диагноза врач проводит тщательный физикальный осмотр: оценивает состояние кожи, слизистой глаза, проводит измерение артериального давления, пальпацию брюшной полости. После для подтверждения или опровержения подозрений назначаются лабораторные тесты, в число которых входит:

  • Общеклинический анализ крови и мочи. Проводятся для выявления воспалительных заболеваний.
  • Биохимический анализ крови. Биохимия определяет уровень сахара в крови, белка, креатинина (продукта распада белка), мочевой кислоты (конечный продукт распада нуклеотидов ДНК и РНК).
  • Липидограмма – анализ на липиды, является основным методом диагностики нарушения липидного обмена. Диагностика показывает уровень холестерина, триглицеридов в крови и устанавливает коэффициент атерогенности (соотношение общей суммы липидов к холестерину).
  • Иммунологический анализ крови. Определяет наличие антител (особых белков, которые вырабатываются организмом для борьбы с чужеродными телами) к хламидиям, цитомегаловирусу. Иммунологический анализ дополнительно выявляет уровень С-реактивного протеина (белка, который появляется при воспалениях).
  • Генетический анализ крови. Исследование выявляет наследственные гены, которые были повреждены. Кровь для диагностики в обязательном порядке берут у самого пациента и его родителей.
  • КТ (компьютерная томография), УЗИ (ультразвуковое исследование) органов брюшной полости. Выявляют патологии печени, селезенки, поджелудочной железы, помогают оценить состояние органов.
  • МРТ (магнитно-резонансная томография), рентгенография. Назначаются как дополнительные инструментальные методы диагностики, когда есть подозрения о наличии проблем с мозгом, легкими.

Лечение нарушения жирового обмена

Для устранения патологии пациентам назначают специальную диету с ограниченным поступлением животных жиров, но обогащенную пищевыми волокнами и минералами. У людей с избыточным весом, калорийность дневного рациона сокращают и предписывают умеренные физические нагрузки, необходимые для нормализации массы тела. Всем больным рекомендуется отказаться или максимально сократить потребление алкоголя. При лечении вторичных дислипидемий важно выявить и начать лечение основного заболевания.

Для нормализации формулы крови и состояния пациента проводят медикаментозную терапию. Устранить неприятные симптомы, наладить липидный обмен помогают следующие группы препаратов:

  • Статины – класс лекарственных препаратов, которые способствуют снижению уровня вредного холестерина, повышают возможность разрушения липидов. Медикаменты из этой группы используются для лечения и профилактики атеросклероза, сахарного диабета. Они значительно улучшают качество жизни пациента, снижают частоту сердечных заболеваний, препятствуют повреждению сосудов. Статины могут вызывать повреждения печени, поэтому противопоказаны людям с печеночными проблемами. К числу данных медикаментов относятся:
  1. Правахол;
  2. Зокор;
  3. Крестор;
  4. Липитор;
  5. Лескол.
  • Ингибиторы абсорбции холестерина – группа медикаментов, которые препятствуют обратному всасыванию холестерина в кишечнике. Действие этих лекарств ограниченно, потому как с пищей человек получает только пятую часть вредного холестерина, остальное вырабатывается в печени. Ингибиторы запрещены беременным женщинам, детям, во время лактации. К популярным лекарствам этой группы относятся:
  1. Гуарем;
  2. Эзетимиб;
  3. Липобон;
  4. Эзетрол.
  • Секвестранты желчных кислот (ионно-обменные смолы) – группа медикаментов, которые связывают желчные кислоты (содержащие холестерин) при поступлении оных в просвет кишечника и выводят их из организма . При длительном приеме секвестранты могут послужить причиной запоров, нарушения вкуса, метеоризма. К ним относятся препараты со следующими торговыми названиями:
  1. Квестран;
  2. Колестипол;
  3. Липантил 200 М;
  4. Трибестан.
  • Витамины-антиоксиданты и полиненасыщенные жирные кислоты Омега-3 – группа поливитаминных комплексов, которые снижают уровень триглицеридов, уменьшают риск развития сердечно-сосудистых заболеваний. К таким добавкам относятся:
  1. Витрум Кардио Омега-3;
  2. ВиаВит;
  3. Мирролла капсулы с Омега-3;
  4. АспаКардио.
  • Фибраты – группа лекарственных средств, снижающих триглицериды и повышающих количество липопротеидов высокой плотности (защитные вещества, препятствующие развитию сердечно-сосудистых нарушений) . Лекарства данной категории назначают совместно со статинами. Не рекомендуется использовать фибраты детям и беременным женщинам. К их числу относятся:
  1. Нормолит;
  2. Липантил;
  3. Липанор;
  4. Безалип;
  5. Гевилон.

Диетотерапия

Обмен липидов в организме человека напрямую зависит от того, что он ест. Правильно составленный рацион питания облегчит состояние пациента и будет способствовать восстановлению баланса обмена веществ. Подробное меню, список запрещенных и разрешенных продуктов составляет врач, но есть и общие правила относительно питания:

  1. Съедать не более 3 яичных желтков в неделю (включая яйца, используемые для приготовления другой пищи).
  2. Сокращение потребления кондитерских изделий, хлеба, сдобы.
  3. Замена глубокой прожарки на тушение, приготовление на пару, отваривание или запекание.
  4. Исключение из рациона копченостей, маринадов, соусов (майонеза, кетчупа), колбасных изделий.
  5. Увеличение суто
  6. чного потребления растительной клетчатки (овощей и фруктов).
  7. Есть только нежирные сорта мяса. При приготовлении срезать видимый жир, кожицу, удалять вытопленный жир при приготовлении блюд.

Лечение народными средствами

В качестве вспомогательной терапии могут использоваться средства народной медицины: отвары, спиртовые настойки, настои. При нарушениях липидного обмена хорошо зарекомендовали себя следующие рецепты:

  1. Смешайте и измельчите при помощи кофемолки по 100 грамм следующих трав: ромашки, спорыша, березовых почек, бессмертника, зверобоя. Отмерьте 15 грамм смеси, залейте 500 мл кипятка. Настаивайте полчаса. Принимайте лекарство в теплом виде, добавив к нему чайную ложку меда, по 200 мл утром и вечером. Каждый день следует готовить новый напиток. Остатки смеси храните в темном месте. Длительность терапии – 2 недели.
  2. Отмерьте 30 г иван-чая, залейте траву 500 мл кипятка. Доведите смесь на медленном огне до кипения, затем настаивайте 30 минут. Принимайте лекарство по 4 раза в день до еды по 70 мл. Курс лечения – 3 недели.
  3. Высушенные листья подорожника (40 грамм) залейте стаканом крутого кипятка. Настаивайте 30 минут, затем отфильтруйте. Принимайте по 30 мл напитка 3 раза в день за 30 минут до еды. Курс терапии – 3 недели.

Видео

Нашли в тексте ошибку?
Выделите её, нажмите Ctrl + Enter и мы всё исправим!

15.2.3. ОБМЕН ЛИПИДОВ

Липиды представлены в организме в основ­ном нейтральными жирами (триглицерида-ми), фосфолипидами, холестерином и жир­ными кислотами. Последние являются также существенным компонентом триглицеридов и фосфолипидов. В структуре триглицеридов на одну молекулу глицерина приходится три молекулы жирных кислот, из них стеарино­вая и пальмитиновая кислоты являются на­сыщенными, а линолевая и линоленовая - ненасыщенными.

А. Роль липидов в организме. 1. Липиды участвуют в пластическом и энергетическом обмене. Их пластическая роль реализуется главным образом фосфолипидами и холесте-

рином. Эти вещества участвуют в синтезе тромбопластина и миелина нервной ткани, стероидных гормонов, желчных кислот, про-стагландинов и витамина D, а также в фор­мировании биологических мембран, обеспе­чении их прочности и биофизических свойств.

2. Холестерин ограничивает абсорбцию во­дорастворимых веществ и некоторых хими­чески активных факторов. Кроме того, он уменьшает неощутимые потери воды через кожу. При ожогах такие потери могут состав­лять в сутки вместо 300-400 мл до 5-10 л.

3. Роль липидов в поддержании структуры и функции клеточных мембран, тканевых оболочек, покровов тела и в механической фиксации внутренних органов является ос­новой защитной роли липидов в организме.

4. При повышении энергетического обмена жиры активно используются в качестве ис­точника энергии. В этих условиях ускоряется гидролиз триглицеридов, продукты которого транспортируются к тканям и окисляются. Почти все клетки (в меньшей степени клетки мозга) могут использовать для получения энергии наряду с глюкозой жирные кислоты.

5. Жиры являются также источником об­разования эндогенной воды и являются свое­образным депо энергии и воды. Депо жира в организме в виде триглицеридов представле­ны в основном клетками печени и жировой ткани. В последней жир может составлять 80-95 % объема клеток. Он используется главным образом для энергетических целей. Накопление энергии в форме жира представ­ляет собой самый экономный способ дли­тельного ее хранения в организме, так как при этом единица запасаемой энергии нахо­дится в сравнительно небольшом объеме ве­щества. Если количество гликогена, одновре­менно хранящегося в различных тканях орга­низма, составляет лишь несколько сотен граммов, то масса жира, находящегося в раз­личных депо, - несколько килограммов. У человека в виде жира хранится в 150 раз больше энергии, чем в виде углеводов. Жиро­вые депо составляют 10-25 % массы тела здорового человека. Их пополнение происхо­дит в результате приема пищи. Если поступ­ление энергии, заключенной в пище, преоб­ладает над расходом энергии, масса жировой ткани в организме увеличивается - развива­ется ожирение.

6. Учитывая, что у взрослой женщины доля жировой ткани в организме составляет в среднем 20-25 % массы тела - почти вдовое больше, чем у мужчины (соответственно 12- 14 %), следует полагать, что жир выполняет в

женском организме еще и специфические функции. В частности, жировая ткань обеспе­чивает женщине резерв энергии, необходи­мый для вынашивания плода и грудного вскармливания.

7. Существуют данные о том, что часть мужских половых стероидных гормонов в жировой ткани преобразуется в женские гор­моны, что является основой косвенного участия жировой ткани в гуморальной регуля­ции функций организма.

Б. Биологическая ценность различных жи­ров. Линолевая и линоленовая ненасыщен­ные кислоты представляют собой незамени­мые факторы питания, так как не могут син­тезироваться в организме из других веществ. Вместе с арахидоновой кислотой, которая образуется в организме главным образом из линолевой кислоты и в небольших количест­ва поступает с мясной пищей, ненасыщен­ные жирные кислоты получили название ви­тамина F (от англ, fat - жир). Роль этих кис­лот состоит в синтезе важнейших липидных компонентов клеточных мембран, которые существенно определяют активность фер­ментов мембран и их проницаемость. Поли­ненасыщенные жирные кислоты являются также материалом для синтеза простагланди-нов - регуляторов многих жизненно важных функций организма.

8. Два пути метаболического превращения липидов. При бета-окислении (первый путь) жирные кислоты превращаются в ацетилко-энзим-А, который далее расщепляется до СО 2 и Н 2 О. По второму пути из ацетилкоэн-зима А образуется ацилцетилкоэнзим А, ко­торый превращается далее в холестерин или в кетоновые тела.

В печени жирные кислоты расщепляются до небольших фракций, в частности до аце-тилкоэнзима А, используемого в энергети­ческом обмене. В печени синтезируются триглицериды, главным образом из углево­дов, реже - из белков. Там же происходят синтез из жирных кислот других липидов и (при участии дегидрогеназ) снижение насы­щенности жирных кислот.

Г. Транспорт липидов лимфой и кровью. Из кишечника весь жир всасывается в лимфу в виде мелких капель диаметром 0,08- 0,50 мкм - хиломикронов. На их внешней поверхности адсорбируется небольшое коли­чество белка апопротеина В, повышающего поверхностную стабильность капель и пред­упреждающего прилипание капель к стенке сосуда.

Через грудной лимфатический проток хи-ломикроны попадают в венозную кровь, при

этом через 1 ч после приема жирной пищи их концентрация может достигать 1-2 %, а плазма крови становится мутной. Через не­сколько часов плазма очищается с помощью гидролиза триглицеридов липопротеиновой липазой, а также путем отложения жира в клетках печени и жировой ткани.

Жирные кислоты, попадая в кровь, могут соединяться с альбумином. Такие соедине­ния называют свободными жирными кисло­тами; их концентрация в плазме крови в ус­ловиях покоя равна в среднем 0,15 г/л. Каж­дые 2-3 мин это количество наполовину расходуется и обновляется, поэтому вся по­требность организма в энергии может быть удовлетворена окислением свободных жир­ных кислот без использования углеводов и белков. В условиях голодания, когда углево­ды практически не окисляются, так как их запас невелик (около 400 г), концентрация свободных жирных кислот в плазме крови может возрастать в 5-8 раз.

Особой формой транспорта липидов кро­вью являются также липопротеины (ЛП), концентрация которых в плазме крови в среднем равна 7,0 г/л. При ультрацентрифу­гировании ЛП разделяются на классы по ве­личине их плотности и содержанию различ­ных липидов. Так, в ЛП низкой плотности (ЛПНП) содержится относительно много триглицеридов и до 80 % холестерина плаз­мы. Эти ЛП захватываются клетками тканей и разрушаются в лизосомах. При большом количестве в крови ЛПНП их захватывают макрофаги интимы кровеносных сосудов, на­капливающие, таким образом, низкоактив­ные формы холестерина и являющиеся ком­понентом атеросклеротических бляшек.

Молекулы ЛП высокой плотности (ЛПВП) на 50 % состоят из белка, в них от­носительно мало холестерина и фосфолипи-дов. Эти ЛП способны адсорбировать холес­терин и его эфиры из стенок артерий и пере­носить их в печень, где они преобразуются в желчные кислоты. Тем самым ЛПВП могут препятствовать развитию атеросклероза, поэ­тому по соотношению концентраций ЛПВП и ЛПНП можно судить о величине риска на­рушений липидного обмена, приводящих к атеросклеротическим поражениям. На каж­дые 10 мг/л снижения концентрации холес­терина липопротеинов низкой плотности от­мечено уменьшение на 2 % смертности от ишемической болезни сердца, представляю­щей собой результат развития главным обра­зом атеросклероза.

Д. Факторы, влияющие на концентрацию холестерина в крови. Нормальная концентра-

ция в плазме крови холестерина колеблется в пределах 1,2-3,5 г/л. Кроме пищи, источни­ком холестерина плазмы является эндоген­ный холестерин, синтезируемый в основном в печени. Концентрация холестерина в плаз­ме крови зависит от ряда факторов.

1. Определяется количеством и активнос­тью ферментов эндогенного синтеза холесте­рина.

2. Диета с высоконасыщенным жиром может привести к повышению концентрации холестерина в плазме на 15-25 %, так как при этом увеличивается отложение жира в печени, образуется больше ацетилкоэнзима А, участвующего в продукции холестерина. С другой стороны, диета с повышенным ко­личеством ненасыщенных жирных кислот способствует незначительному или умерен­ному снижению концентрации холестери­на. Снижает концентрацию холестерина в ЛПНП прием овсяной пищи, способствую­щей повышению синтеза желчных кислот в печени и за счет этого - снижению образо­вания ЛПНП.

3. Уменьшению концентрации холестери­на и повышению содержания в плазме крови ЛПВП способствуют регулярные физические упражнения. Особенно эффективны ходьба, бег, плавание. При выполнении физических упражнений риск развития атеросклероза у мужчин снижается в 1,5, а у женщин - в 2,4 раза. У лиц физически неактивных и тучных имеется тенденция к увеличению концентра­ции ЛПНП.

4. Способствует повышению концентра­ции холестерина снижение секреции инсули­на и тиреоидных гормонов.

5. У некоторых лиц нарушения обмена хо­лестерина могут развиваться за счет измене­ния активности рецепторов ЛП при нормаль­ном количестве в плазме крови холестерина и ЛП. Чаще всего это связано с курением и изменениями концентрации в крови выше­указанных гормонов.

Е. Регуляция липидного обмена. Гормо­нальная регуляция обмена триглицеридов за­висит от количества глюкозы в крови. При его снижении мобилизация жирных кислот из жировой ткани ускоряется за счет сниже­ния секреции инсулина. При этом ограничи­вается и депонирование жира - большая его часть используется для получения энергии.

При физической нагрузке и стрессах акти­вация симпатической нервной системы, по­вышение секреции катехоламинов, кортико-тропина и глюкокортикоидов приводят к уве­личению активности гормоночувствительной триглицерид-липазы жировых клеток, в ре-

зультате в крови повышается концентрация жирных кислот. При интенсивных и длитель­ных стрессах это может приводить к разви­тию нарушений липидного обмена и атеро­склероза. Практически так же действует со-матотропный гормон гипофиза.

Тиреоидные гормоны, первично влияя на скорость энергетического обмена, приводят к снижению количества ацетилкоэнзима А и других метаболитов липидного обмена, в ре­зультате способствуя быстрой мобилизации жира.

Липиды организма человека включают соединения, значительно различающиеся как по структуре, так и по функциям в живой клетке. Наиболее важными группами липидов с точки зрения функции являются:

1) Триацилглицеролы (ТАГ) – важный источник энергии. Среди питательных веществ они самые калорийные. Около 35% суточной потребности человека в энергии покрывается за счет ТАГ. В некоторых органах, таких как сердце, печень, свыше половины необходимой энергии поставляют ТАГ.

2) Фосфолипиды и гликолипиды – важнейшие компоненты клеточных мембран. При этом некоторые фосфолипиды выполняют особые функции: а) дипальмитоиллецитин является основным элементом сурфактанта легких. Его отсутствие у недоношенных детей может приводить к расстройствам дыхания; б) Фосфатидилинозитол является предшественником вторичных гормональных посредников; в) тромбоцит-активирующему фактору, являющемуся по своей природе алкилфосфолипидом, отводится важная роль в патогенезе бронхиальной астмы, ИБС и других заболеваний.

3) Стероиды. Холестерин входит в состав клеточных мембран, а также служит предшественником желчных кислот, стероидных гормонов, витамина D 3 .

4) Простагландины и лейкотриены – производные арахидоновой кислоты, выполняющие в организме регуляторные функции.

Обмен жирных кислот

Источником жирных кислот для организма служат липиды пищи, а также синтез жирных кислот из углеводов. Использование жирных кислот происходит по трем направлениям: 1) окисление до СО 2 и Н 2 О с образованием энергии, 2) депонирование в жировой ткани в виде ТАГ, 3) синтез сложных липидов.

Все превращения свободных жирных кислот в клетках начинаются с образования ацил-КоА. Эта реакции катализируется ацил-КоА-синтетазами, локализованными на наружной митохондриальной мембране:

R-COOH+ КоА + АТФ → ацил-КоА + АМФ + Н 4 Р 2 О 7

С учетом этого обстоятельства основные пути превращений жирных кислот можно представить следующим образом:

Окисление жирных кислот с четным числом атомов углерода

Окисление жирных кислот происходит в матриксе митохондрий. Однако, образовавшийся в цитоплазме ацил-КоА неспособен проникать через внутреннюю мембрану митохондрий. Поэтому транспорт ацильных групп осуществляется с помощью специального переносчика – карнитина (рассматривается как витаминоподобное вещество) и двух ферментов – карнитин-ацилтрансферазы I(КАТ 1) и КАТ 2. Сначала под действием КАТ 1 происходит перенос ацильных групп с ацил-КоА на карнитин с образованием комплекса ацил-карнитин:

Ацил-КоА + карнитин → ацил-карнитин + КоА

Образовавшийся ацил-карнитин проникает через внутреннюю мембрану митохондрий и на внутренней стороне внутренней мембраны митохондрий при участии фермента КАТ 2 происходит перенос ацильной группы с ацил-карнитина на внутримитохондриальный КоА с образованием ацил-КоА:

ацил-карнитин + КоА → Ацил-КоА + карнитин

Освободившийся карнитин вступает в новый цикл транспорта ацильных групп, а жирнокислотные остатки подвергаются окислению в цикле, получившем название β-окисления жирных кислот.

Процесс окисления жирных кислот заключается в последовательном отщеплении двууглеродных фрагментов от карбоксильного конца жирной кислоты. Каждый двууглеродный фрагмент отщепляется в результате цикла из 4 ферментативных реакций:

Судьба образовавшихся продуктов: ацетил-КоА вступает в цикл лимонной кислоты, ФАДН 2 и НАДН·Н + передают протоны и электроны в дыхательную цепь, а образовавшийся ацил-КоА вступает в новый цикл окисления, состоящий из тех же 4-х реакций. Многократное повторение этого процесса приводит к полному распаду жирной кислоты до ацетил-КоА.

Расчет энергетической ценности жирных кислот

на примере пальмитиновой кислоты (С 16).

Для окисления пальмитиновой кислоты с образованием 8 молекул ацетил-КоА требуется 7 циклов окисления. Количество циклов окисления рассчитывается по формуле:

п = С/2 – 1,

где С – количество атомов углерода.

Таким образом, в результате полного окисления пальмитиновой кислоты образуется 8 молекул ацетил-КоА и по 7 молекул ФАДН 2 и НАДН·Н + . Каждая молекула ацетил-КоА дает 12 молекул АТФ, ФАДН 2 – 2 молекулы АТФ и НАДН·Н + – 3 молекулы АТФ. Суммируем и получаем: 8 · 12 + 7 · (2 + 3) = 96 + 35 = 131. После вычитания 2-х молекул АТФ, затрачиваемых на этапе активации жирной кислоты, получаем суммарный выход – 129 молекул АТФ.

Значение окисления жирных кислот

Использование жирных кислот путем β-окисления происходит во многих тканях. Особенно велика роль этого источника энергии в сердечной мышце и в скелетных мышцах при длительной физической работе.

Окисление жирных кислот с нечетным числом атомов углерода

Жирные кислоты с нечетным числом атомов углерода поступают в организм человека в небольших количествах с растительной пищей. Они окисляются в той же последовательности, что и жирные кислоты с четным числом атомов “С”, т.е. путем отщепления двууглеродных фрагментов с карбоксильного конца жирной кислоты. При этом на завершающей стадии β-окисления образуется пропионил-КоА. Кроме того, пропионил-КоА образуется при катаболизме аминокислот с разветвленным боковым радикалом (валина, изолейцина, треонина). Пропионил-КоА имеет свой путь метаболизма:

Сначала при участии пропионил-КоА-карбоксилазы происходит карбоксилирование пропионил-КоА с образованием метилмалонил-КоА. Затем метилмалонил-КоА под действием метилмалонил-КоА-мутазы превращается в сукцинил-КоА – метаболит цикла лимонной кислоты. Коферментом метилмалонил-КоА-мутазы служит дезоксиаденозилкобаламин – одна из коферментных форм витамина В 12 . При недостатке витамина В 12 эта реакция замедляется и с мочой выводятся большие количества пропионовой и метилмалоновой кислот.

Синтез и использование кетоновых тел

Ацетил-КоА включается в цитратный цикл в условиях, когда окисление углеводов и липидов сбалансировано, т.к. включение ацетил-КоА, образовавшийся при окислении жирных кислот, в ЦЛК зависит от доступности оксалоацетата, являющегося в основном продуктом обмена углеводов.

В условиях, когда преобладает расщепление липидов (сахарный диабет, голодание, безуглеводная диета) образовавшийся ацетил-КоА вступает на путь синтеза кетоновых тел.

Свободный ацетоацетат восстанавливается в ходе обратимой реакции до β-гидроксибутирата или декарбоксилируется спонтанно или ферментативно в ацетон.

Ацетон не утилизируется организмом как источник энергии и выводится из организма с мочой, потом и выдыхаемым воздухом. Ацетоацетат и β-гидроксибутират в норме выполняют роль топлива и являются важными источниками энергии.

В связи с отсутствием в печени 3-кетоацил-КоА-трансферазы сама печень не способна использовать ацетоацетат в качестве источника энергии, снабжая им другие органы. Таким образом, ацетоацетат можно рассматривать как водорастворимую транспортную форму ацетильных остатков.

Биосинтез жирных кислот

Синтез жирных кислот имеет ряд особенностей:

    В отличие от окисления синтез локализован в цитозоле.

    Непосредственным предшественником семи (из восьми) двууглеродных фрагментов молекулы пальмитиновой кислоты является малонил-КоА, образующийся из ацетил-КоА.

    Ацетил-КоА непосредственно в реакциях синтеза используется как затравка.

    Для восстановления промежуточных процессов синтеза жирных кислот используется НАДФНН + .

    Все стадии синтеза жирной кислоты из малонил-КоА представляют собой циклический процесс, который протекает на поверхности синтазы жирных кислот или пальмитатсинтазы, так как основной жирной кислотой в липидах человека является пальмитиновая кислота.

Образование малонил-КоА из ацетил-КоА происходит в цитозоле. Ацетил-КоА, в свою очередь, образуется из цитрата, который поступает из митохондрий и в цитоплазме расщепляется с помощью фермента АТФ-цитратлиазы:

Цитрат + АТФ + КоА → ацетил-КоА + оксалоацетат + АДФ + Н 3 РО 4

Образовавшийся ацетил-КоА подвергается карбоксилированию с помощью фермента ацетил-КоА-карбоксилазы:

А
цетил-КоА-карбоксилаза – регуляторный фермент. Катализируемая этим ферментом реакция является лимитирующим этапом, определяющим скорость всего процесса биосинтеза жирных кислот. Ацетил-КоА-карбоксилаза активируется цитратом и ингибируется длинноцепочечными ацил-КоА.

Последующие реакции протекают на поверхности пальмитатсинтазы. Пальмитатсинтаза млекопитающих является полифункциональным ферментом, состоящим из 2 идентичных полипептидных цепей, каждая из которых имеет 7 активных центров и ацилпереносящий белок, который переносит растущую жирнокислотную цепь из одного активного центра в другой. Каждый из белков имеет 2 центра связывания, содержащих SH-группы. Поэтому кратко этот комплекс обозначают:

Центральное место в каждом из белков занимает ацилпереносящий белок (АПБ), который содержит фосфорилированную пантотеновую кислоту (фосфопантетеин). Фосфопантетеин имеет на конце –SH группу. На первом этапе ацетильный остаток переносится на SH-группу цистеина, а малонильный остаток переносится на SH-группу 4`-фосфопантетеина пальмитатсинтазы (ацилтрансферазная активность) (реакции 1 и 2).

Далее в реакции 3 ацетильный остаток переносится на место карбоксильной группы малонильного остатка; карбоксильная группа при этом отщепляется в виде СО 2 . Затем последовательно происходит восстановление 3-карбонильной группы (реакция 4), отщепление воды с образованием двойной связи между - (2) и - (3) углеродными атомами (реакция 5), восстановление двойной связи (реакция 6). В результате получается остаток четырехуглеродной кислоты, соединенной с ферментом через пантотеновую кислоту (бутирил-Е). Далее новая молекула малонил-КоА взаимодействует с SH-группой фосфопантетеина, при этом насыщенный ацильный остаток перемещается на свободную SH-группу цистеина.

1. Перенос ацетила с ацетил-КоА на синтазу.

2. перенос малонила с малонил-КоА на синтазу.

3. стадия конденсации ацетила с малонилом и декарбоксилирования образовавшегося продукта.

4. реакция первого восстановления

5. реакция дегидратации

6. реакция второго восстановления

После этого бутирильная группа переносится с одной HS-группы на другую, а на освободившееся место поступает новый малонильный остаток. Цикл синтеза повторяется. После 7 таких циклов образуется конечный продукт – пальмитиновая кислота. Процесс наращивания цепи на этом заканчивается и далее под действием гидролитического фермента молекула пальмитиновой кислоты отщепляется от молекулы синтазы.

Синтез ненасыщенных жирных кислот

Образование двойной связи в молекуле жирной кислоты происходит в результате реакции окисления, катализируемой ацил-КоА-десатуразой. Реакция протекает по схеме:

пальмитоил-КоА + НАДФН·Н + + О 2 → пальмитолеил-КоА + НАДФ + + Н 2 О

В тканях человека двойная связь в положении Δ 9 молекулы жирной кислоты образуется легко, тогда как образование двойной связи между Δ 9 -двойной связью и метильным концом жирной кислоты невозможно. Поэтому человек не способен синтезировать линолевую кислоту (С 18 Δ 9,12) и α-линоленовую кислоту (С 18 Δ 9,12,15). Эти полиненасыщенные жирные кислоты используются в организме в качестве предшественников при синтезе арахидоновой кислоты (С 20 Δ 5,8,11,14), поэтому они должны обязательно поступать с пищей. Эти полиненасыщенные жирные кислоты получили название незаменимых жирных кислот. Арахидоновая кислота, в свою очередь, служит предшественником при синтезе простагландинов, лейкотриенов и тромбоксанов.

Регуляция окисления и синтеза жирных кислот в печени

В печени высоко активны ферментные системы как синтеза, так и распада жирных кислот. Однако эти процессы разделены в пространстве и во времени. Окисление жирных кислот протекает в митохондриях, тогда как синтез – в цитозоле клетки. Разделение во времени достигает действием регуляторных механизмов, заключающихся в аллостерической активации и ингибировании ферментов.

Наибольшая скорость синтеза жирных кислот и жиров наблюдается после приема углеводной пищи. В этих условиях в клетки печени поступает большое количество глюкозы, глюкоза (в ходе гликолиза) окисляется до пирувата, часто которого превращается в оксалоацетат:

пируват + СО 2 оксалоацетат

пируват ацетил-КоА

Вступая в ЦЛК эти соединения превращаются в цитрат. Избыток цитрата выходит в цитозоль клетки, где активирует ацетил-КоА-карбоксилазу – ключевой фермент синтеза жирных кислот. С другой стороны цитрат является предшественником цитоплазматического ацетил-КоА. Это приводит к повышению концентрации малонил-КоА и началу синтеза жирных кислот. Малонил-КоА ингибирует карнитин-ацилтрансферазу I, в результате чего транспорт ацильных групп в митохондрии прекращается, а следовательно прекращается и их окисление. Таким образом, при включении синтеза жирных кислот автоматически выключается их распад. Наоборот, в период, когда концентрация оксалоацетата снижается, поток цитрата в цитозоль ослабевает и синтез жирных кислот прекращается. Уменьшение концентрации малонил-КоА открывает путь для ацильных остатков в митохондрии, где начинается их окисление. Этот механизм обеспечивает первоочередное использование углеводов: печень сберегает или даже пополняет запас жиров в организме, когда есть углеводы, и лишь по мере их исчерпания начинается использование жира.

Обмен триацилглицеролов

Природные жиры представляют собой смесь ТАГ, различающихся по жирнокислотному составу. В ТАГ человека содержится много ненасыщенных жирных кислот, поэтому жир человека имеет низкую температуру плавления (10–15 о С) и находится в клетках в жидком состоянии.

Переваривание жиров

Жиры – одна из групп основных пищевых веществ человека. Суточная потребность в них составляет 50-100 г.

У взрослого человека условия для переваривания липидов имеются только в верхних отделах кишечника, где имеется подходящая среда и куда поступают фермент – панкреатическая липаза и эмульгаторы – желчные кислоты. Панкреатическая липаза поступает в кишечник в реактивной форме – в форме пролипазы. Активация происходит при участии желчных кислот и еще одного белка панкреатического сока – колипазы. Последняя присоединяется к пролипазе в молярном отношении 2: 1. В результате липаза становится активной и устойчивой к действию трипсина.

Активная липаза катализирует гидролиз эфирных связей в - и 1 -положениях, в результате образуется-МАГ и освобождаются две жирные кислоты. В панкреатическом соке помимо липазы содержится моноглицеридная изомераза – фермент, катализирующий внутримолекулярный перенос ацила из-положения МАГ в-положение. А эфирная связь в-положении чувствительна к действию панкреатической липазы.

Всасывание продуктов переваривания

Основная часть ТАГ всасывается после расщепления их липазой на -МАГ и жирные кислоты. Всасывание происходит при участии желчных кислот, которые образуют с МАГ и жирными кислотами мицеллы, которые проникают в клетки слизистой кишечника. Отсюда желчные кислоты поступают в кровь, а с ней – в печень и повторно участвуют в образовании желчи. Гепатоэнтеральная циркуляция желчных кислот из печени в кишечник и обратно имеет исключительно важное значение, обеспечивая всасывание больших количеств МАГ и жирных кислот (до 100 и более г/сутки) при относительно небольшом общем фонде желчных кислот (2,8-3,5 г). В норме не всасывается и выводится с калом лишь небольшая часть желчных кислот (до 0,5 г/сутки). При нарушении желчеобразования или выведения желчи условия для переваривания жиров и всасывания продуктов гидролиза ухудшаются, и значительная часть их выводится с калом. Это состояние называется стеаторреей. При этом также не всасываются жирорастворимые витамины, что приводит к развитию гиповитаминозов.

Ресинтез жиров в клетках кишечника

Большая часть продуктов переваривания липидов в клетках кишечника вновь превращается в ТАГ. Жирные кислоты образуют ацил-КоА, затем ацильные остатки переносятся на МАГ при участии ацилтрансфераз.

Образование жиров из углеводов

Часть углеводов, поступающих с пищей, превращается в организме в жиры. Глюкоза служит источником ацетил-КоА, из которого синтезируются жирные кислоты. Необходимый для восстановительных реакций НАДФНН + образуется при окислении глюкозы в пентозофосфатном пути, а глицерол-3-фосфат получается путем восстановления дигидроксиацетонфосфата – метаболита гликолиза.

В связи с отсутствием глицеролкиназы в жировой ткани, этот путь образования глицерол-3-фосфата является единственным в адипоцитах. Таким образом, из глюкозы образуются все компоненты, необходимые для синтеза жиров. Синтез ТАГ из глицерол-3-фосфата и ацил-КоА идет по схеме:

Синтез жиров из углеводов наиболее активно протекает с печени и менее активно в жировой ткани.

Липидный обмен - это метаболизм липидов, он представляет собой сложный физиологический и биохимический процесс, который происходит в клетках живых организмов. Нейтральные липиды, такие как холестерин и триглицериды (ТГ), нерастворимы в плазме. В результате циркулирующие в крови липиды привязаны к протеинам, транспортирующим их в различные ткани для энергетической утилизации, отложения в виде жировой ткани, продукции стероидных гормонов и формирования желчных кислот.

Липопротеин состоит из липида (этерифицированной или неэтерифицированной формы холестерина, триглицеридов и фосфолипидов) и белка. Протеиновые компоненты липопротеина известны, как аполипопротеины и апопротеины.

Особенности жирового обмена

Липидный обмен разделяется на два основных метаболических пути: эндогенный и экзогенный. Это подразделение основано на происхождении рассматриваемых липидов. Если источником происхождения липидов является пища, то речь идет об экзогенном метаболическом пути, а если печень - об эндогенном.

Выделяют различные классы липидов, каждый из которых характеризуется отдельной функцией. Различают хиломикроны (ХМ), (ЛПОНП), липопротеины средней плотности (ЛПСП), и плотности (ЛПВП). Метаболизм отдельных классов липопротеинов не является независимым, все они тесно взаимосвязаны. Понимание липидного обмена важно для адекватного восприятия вопросов патофизиологии сердечно-сосудистых заболеваний (ССЗ) и механизмов действия лекарств.

Холестерин и триглицериды необходимы периферическим тканям для разнообразных аспектов гомеостаза, включая поддержания клеточных мембран, синтез стероидных гормонов и желчных кислот, а также утилизацию энергии. Учитывая то, что липиды не могут растворяться в плазме, их переносчиками являются различные липопротеины, циркулирующие в кровеносной системе.

Базовая структура липопротеина обычно включает ядро, состоящее из этерифицированного холестерина и триглицерида, окруженных двойным слоем фосфолипидов, а также не этерифицированным холестерином и различными протеинами, называющимися аполипопротеинами. Эти липопротеины отличаются по своим размерам, плотности и составу липидов, аполипопротеинов и другим признакам. Показательно, что липопротеины обладают различными функциональными качествами (таблица 1).

Таблица 1. Показатели липидного обмена и физические характеристики липопротеидов в плазме.

Липопротеин Содержание липидов Аполипопротеины Плотность (г/мл) Диаметр
Хиломикрон (ХМ) ТГ A-l, A-ll, A-IV, B48, C-l, C-ll, C-IIL E <0,95 800-5000
Остаточный хиломикрон ТГ, холестериновый эфир B48,E <1,006 >500
ЛПОНП ТГ B100, C-l, C-ll, C-IIL E < 1,006 300-800
ЛПСП Холестериновый эфир, ТГ B100, C-l, C-ll, C-l II, E 1,006-1,019 250-350
ЛПНП Холестериновый эфир, ТГ B100 1,019-1,063 180-280
ЛПВП Холестериновый эфир, ТГ A-l, A-ll, A-IV, C-l, C-ll, C-lll, D 1,063-1,21 50-120

Основные классы липопротеинов, упорядоченные по убыванию размера частиц:

  • ЛПОНП,
  • ЛПСП,
  • ЛПНП,
  • ЛПВП.

Пищевые липиды поступают в кровеносную систему, прикрепившись аполипопротеину (apo) B48, содержащему хиломикроны, синтезируемые в кишечнике. Печень синтезирует ЛПОНП1 и ЛПОНП2 вокруг apoB100, привлекая липиды, присутствующие в кровеносной системе (свободные жирные кислоты) или в пище (остаточный хиломикрон). Затем ЛПОНП1 и ЛПОНП2 делипидизируются липопротеинлипазой, высвобождающей жирные кислоты для потребления скелетными мышцами и жировой тканью. ЛПОНП1, высвобождая липиды, превращается в ЛПОНП2, ЛПОНП2 далее трансформируется в ЛПСП. Остаточный хиломикрон, ЛПСП и ЛПНП могут захватываться печенью посредством рецептора.

Липопротеины высокой плотности формируется в межклеточном пространстве, где apoAI контактирует с фосфолипидами, свободным холестерином и формирует дисковидную частицу ЛПВП. Далее эта частица взаимодействуют с лецитином, и образуются эфиры холестерина, формирующие ядро ЛПВП. В конечном итоге холестерин потребляется печенью, а кишечник и печень секретируют apoAI.

Метаболические пути липидов и липопротеинов тесно взаимосвязаны. Несмотря на то, что существуют ряд эффективных лекарств, снижающих липиды в организме, их механизм действия по-прежнему остаются мало изученным. Требуется дальнейшее уточнение молекулярных механизмов действия этих препаратов для улучшения качества лечения дислипидемии.

Влияние лекарств на липидный обмен

  • Статины увеличивают скорость выведения ЛПОНП, ЛПСП и ЛПНП, а также уменьшают интенсивность синтеза ЛПОНП. В конечном итоге это улучшает липопротеиновый профиль.
  • Фибраты ускоряют выведение частиц apoB и интенсифицируют продукцию apoAI.
  • Никотиновая кислота снижает ЛПНП и ТГ, а также повышает содержание ЛПВП.
  • Снижение веса тела способствуют уменьшению секреции ЛПОНП, что улучшает липопротеиновый метаболизм.
  • Регулирование липидного обмена оптимизируется за счет омега-3 жирных кислот.

Генетические нарушения

Науке известен целый набор наследственных дислипидемических заболеваний, при которых основным дефектом является регуляция липидного обмена. Наследственная природа этих заболеваний в ряде случаев подтверждается генетическими исследованиями. Эти заболевания зачастую идентифицируются посредством раннего липидного скрининга.

Краткий перечень генетических форм дислипидемии.

  • Гиперхолестеринемия: семейная гиперхолестеринемия, наследственный дефективный apoB100, полигенная гиперхолестеринемия.
  • Гипертриглицеридемия: семейная гипертриглицеридемия, семейная гиперхиломикронемия, недостаток липопротеинлипазы.
  • Сбои в метаболизме ЛПВП: семейная гипоальфалипопротеинемия, недостаток LCAT, точечные мутации apoA-l, недостаток ABCA1.
  • Комбинированные формы гиперлипидемии: семейная комбинированная гиперлипидемия, гиперапобеталипопротеинемия, семейная дисбеталипопротеинемия.

Гиперхолестеринемия

Семейная гиперхолестеринемия является монозиготным, аутосомным, доминантным заболеванием, включающим cбойную экспрессию и функциональную активность рецептора ЛПНП. Гетерозиготная экспрессия этого заболевания среди населения отмечается в одном случае из пятисот. Различные фенотипы были идентифицированы на основании дефектов в синтезе, транспортировке и связывании рецептора. Этот тип семейной гиперхолестеринемии ассоциируется со значительным поднятием ЛПНП, присутствием ксантом и преждевременным развитием диффузного атеросклероза.

Клинические проявления более выражены у пациентов с гомозиготными мутациями. Диагностика нарушений липидного обмена зачастую делается на основании выраженной гиперхолестеринемии при нормальных ТГ и присутствии сухожильных ксантом, а также при наличии в семейном анамнезе ранних ССЗ. Для подтверждения диагноза используются генетические методы. В ходе лечения используются высокие дозы статинов в дополнение к препаратам. В некоторых случаях требуется аферез ЛПНП. Дополнительные сведения, полученные в ходе последних исследований, подтверждают необходимость использования интенсивной терапии применительно к детям и подросткам, находящихся в зоне повышенного риска. Дополнительные терапевтические возможности для сложных случаев включают трансплантацию печени и генную заместительную терапию.

Наследственный дефективный apoB100

Наследственный дефект гена apoB100 являются аутосомным заболеванием, приводящим к липидным аномалиям, напоминающим таковые при семейной гиперхолестеринемии. Клиническая выраженность и подход в лечении этого заболевания сходны с таковыми для гетерозиготной семейной гиперхолестеринемии. Полигенная холестеринемия характеризуется умеренно выраженным повышением ЛПНП, нормальным ТГ, ранним атеросклерозом и отсутствием ксантом. Дефекты, включающие увеличенный синтез apoB и уменьшенную экспрессию рецептора, могут привести к поднятию ЛПНП.

Гипертриглицеридемия

Семейная гипертриглицеридемия является аутосомным заболеванием доминантного характера, характеризующимся повышенным триглицеридов в сочетании с инсулинорезистентностью и сбоем в регуляции кровяного давления и уровня мочевой кислоты. Мутации в гене липопротеинлипазы, лежащие в основе этого заболевания, отвечают за степень подъема уровня триглицеридов.

Семейная гиперхиломикронемия представляет экстенсивную форму мутации липопротеинлипазы, приводящую к более сложной форме гипертриглицеридемии. Недостаток липопротеинлипазы ассоциируется с гипертриглицеридемией и ранним атеросклерозом. При этом заболевании требуется сокращение потребления жиров и применение медикаментозной терапии в целях снижения ТГ. Также необходимо прекращение употребления алкоголя, борьба с ожирение и интенсивное лечение диабета.

Сбои в метаболизме липопротеинов высокой плотности

Семейная гипоальфалипопротеинемия является малораспространенным аутосомным заболеванием, включающим мутации в гене apoA-I и приводящим к уменьшению липопротеинов высокой плотности и раннему атеросклерозу. Дефицит лецитин-холестерин-ацилтрансферазы характеризуется сбойной этерификацией холестерина на поверхности частиц ЛПВП. В результате наблюдается низкий уровень ЛПВП. В ряде случаев были описаны различные генетические мутации apoA-I, включающие замену одной аминокислоты.

Анальфалипопротеинемия характеризуется накоплением клеточных липидов и присутствием пенистых клеток в периферических тканях, а также гепатоспленомегалией, периферической нейропатией, низким уровнем ЛПВП и ранним атеросклерозом. Причиной этого заболевания являются мутации в гене ABCA1, приводящие к клеточному накоплению холестерина. Усиленный почечный клиренс apoA-I способствуют снижению липопротеинов высокой плотности.

Комбинированные формы гиперлипидемии

Частота присутствия семейной комбинированной гиперлипидемии может достигать 2% среди населения. Она характеризуется повышенным уровнем apoB, ЛПНП и триглицеридов. Это заболевание вызывается избыточным синтезом apoB100 в печени. Выраженность заболевания у конкретного индивидуума определяется относительным недостатком активности липопротеинлипазы. Гиперапобеталипопротеинемия является разновидностью семейной гиперлипидемии. Для лечения этого заболевания обычно применяются статины в комбинации с другими препаратами, включая ниацин, секвестранты желчных кислот, эзетимиб и фибраты.

Семейная дисбеталипопротеинемия является аутосомным рецессивным заболеванием, характеризующимся присутствием двух аллелей apoE2, а также повышенным ЛПНП, наличием ксантом и ранним развитием ССЗ. Сбой в выведении ЛПОНП и остаточных хиломикронов приводит к образованию частиц ЛПОНП (бета-ЛПОНП). Так как это заболевание опасно развитием ССЗ и острого панкреатита, требуется интенсивная терапия для снижения триглицеридов.

Нарушения липидного обмена - общие характеристики

  • Наследственные заболевания липопротеинового гомеостаза приводят к гиперхолестеринемии, гипертриглицеридемии и низкому уровню ЛПВП.
  • В большинстве этих случаев отмечается повышенный риск ранних ССЗ.
  • Диагностика нарушений обмена включает ранний скрининг при помощи липидограмм, являющихся адекватной мерой для раннего выявления проблем и начала терапии.
  • Для близких родственников больных рекомендуется проведение скрининга при помощи липидограмм, начиная с раннего детства.

Второстепенные причины, способствующие нарушению липидного обмена

Небольшое количество случаев аномального уровня ЛПНП, ТГ и ЛПВП вызвано сопутствующими медицинскими проблемами и препаратами. Лечение этих причин обычно приводит к нормализации липидного обмена. Соответственно для больных дислипидемией требуется проведение обследования на наличие второстепенных причин нарушения липидного обмена.

Оценка второстепенных причин нарушений липидного обмена должна производиться при первичном обследовании. Анализ исходного состояния больных дислипидемией должен включать оценку состояния щитовидной железы, а также ферментов печени, сахара в крови и показателей биохимии мочи.

Нарушения липидного обмена при сахарном диабете

Диабет сопровождается гипертриглицеридемией, низким ЛПВП и наличием мелких и плотных частиц ЛПНП. При этом отмечается инсулинорезистентность, ожирение, повышенный уровень глюкозы и свободных жирных кислот и сниженная активность липопротеинлипазы. Интенсивный гликемический контроль и снижение центрального типа ожирения могут положительно сказываться на общем уровне липидов, особенно при наличии гипертриглицеридемии.

Нарушение гомеостаза глюкозы, наблюдаемое при диабете, сопровождаются повышенным давлением и дислипидемией, что приводит к атеросклеротическим явлениям в организме. Ишемические заболевания сердца являются наиболее важным фактором смертности у пациентов с сахарным диабетом. Частота этого заболевания в 3–4 раза выше у пациентов с инсулиннезависимым диабетом, чем в норме. Медикаментозная терапия по снижению ЛПНП, особенно при помощи статинов, эффективна в уменьшении тяжести ССЗ у диабетиков.

Непроходимость желчных путей

Хронический холелитиаз и первичный билиарный цирроз взаимосвязаны с гиперхолестеринемией посредством развития ксантом и повышенной вязкости крови. Лечение непроходимости желчных путей может способствовать нормализации липидного обмена. Несмотря на то, что при непроходимости желчных путей обычно можно использовать стандартные медикаментозные средства для снижения липидов, статины обычно противопоказаны для пациентов с хроническими заболеваниями печени или холелитиазом. Плазмофорез также можно использовать для лечения симптоматических ксантом и повышенной вязкости.

Заболевания почек

Гипертриглицеридемия часто встречается у пациентов, страдающих хронической почечной недостаточностью. По большей части это связано со сниженной активностью липопротеинлипазы и печеночной липазы. Аномальные уровни триглицеридов обычно отмечаются у лиц, проходящих лечение от перитонеального диализа.

Было выдвинуто предположение, что сниженная скорость вывода из организма потенциальных ингибиторов липазы играет ключевую роль в развитии этого процесса. Также при этом отмечается повышенный уровень липопротеина (a) и низкий уровень ЛПВП, что приводить к ускоренному развитию ССЗ. К второстепенным причинам, способствующим развитию гипертриглицеридемии относятся:

  • Сахарный диабет
  • Хроническая почечная недостаточность
  • Ожирение
  • Нефротический синдром
  • Синдром Кушинга
  • Липодистрофия
  • Табакокурение
  • Избыточное употребление углеводов

Была сделана попытка при помощи клинических испытаний выяснить воздействие гиполипидемической терапии на пациентов с конечными стадиями почечной недостаточности. Эти исследования показали, что аторвастатин не способствовал снижению комбинированной конечной точки ССЗ, инфарктов миокарда и инсульта. Также было отмечено, что розувастатин не снижал встречаемость ССЗ у пациентов, находящихся на регулярном гемодиализе.

Нефротический синдром взаимосвязан с повышением ТГ и липопротеин (а), что вызвано усиленным синтезом apoB печенью. Лечение нефротического синдрома основано на устранении исходных проблем, а также на нормализации уровня липидов. Использование стандартной гиполипидемической терапии может быть эффективным, однако требуется постоянный мониторинг возможного развития побочных эффектов.

Заболевания щитовидной железы

Гипотиреоз сопровождается повышенным уровнем ЛПНП и триглицеридов, а степень их отклонения от нормы зависит от масштаба проблем с щитовидной железой. Причиной этого является снижение экспрессии и активности рецептора ЛПНП, а также уменьшение активности липопротеинлипазы. Гипертиреоз обычно проявляется низким ЛПНП и ТГ.

Ожирение

Центральное ожирение сопровождается повышенным уровнем ЛПОНП и триглицеридов, а также низким ЛПВП. Снижение массы тела, а также корректировка рациона приводят к положительному воздействию на уровень триглицеридов и ЛПВП.

Лекарственные препараты

Многие сопутствующие лекарственные препараты вызывают развитие дислипидемии. По этой причине начальная оценка пациентов с аномалиями в липидном обмене должна сопровождаться внимательным анализом принимаемых препаратов.
Таблица 2. Препараты, оказывающие влияние на уровень липидов.

Препарат Повышение ЛПНП Повышение триглицеридов Снижение ЛПВП
Тиазидные диуретики +
Циклоспорин +
Амиодарон +
Росиглитазон +
Секвестранты желчных кислот +
Ингибиторы протеиназы +
Ретиноиды +
Глюкокортикоиды +
Анаболические стероиды +
Сиролимус +
Бета-блокаторы + +
Прогестины +
Андрогены +

Тиазидные диуретики и бета-блокаторы при приеме часто вызывают гипертриглицеридемию и пониженный ЛПВП. Экзогенный эстроген и прогестерон, входящие в состав компонентов заместительной гормональной терапии и оральных контрацептивов, вызывают гипертриглицеридемию и снижение ЛПВП. Антиретровирусные препараты для ВИЧ-пациентов сопровождаются гипертриглицеридемией, повышением ЛПНП, инсулинорезистентностью и липодистрофией. Анаболические стероиды, кортикостероиды, циклоспорин, тамоксифен и ретиноиды при употреблении также приводят к аномалиям липидного обмена.

Лечение нарушений липидного обмена

Корректировка липидного обмена

Хорошо исследована и обоснована роль липидов в патогенезе атеросклеротических ССЗ. Это привело к активным поискам способов снижения уровня атерогенных липидов и усиления защитных свойств ЛПВП. Последние пять десятилетий характеризовались развитием широкого спектра диетических и фармакологических подходов для корректировки липидного обмена. Ряд этих подходов способствовал снижению риска ССЗ, что привело к широкому внедрению данных препаратов на практике (таблица 3).
Таблица 3. Основные классы препаратов, используемые для лечения нарушений липидного обмена.

Фармацевтическая группа ЛПНП Триглицериды ЛПВП




error: Контент защищен !!