Фасеточные глаза мухи эволюция. Как выглядит мир глазами обыкновенной мухи? Устройство зрительных органов

Мозг мухи вряд ли больше, чем отверстие в швейной иголке. Но муха, обладая таким мозгом, умудряется обработать более ста статических изображений (кадров) в секунду. Как известно, у человека предел - примерно 25 кадров в секунду. А муха нашла более простой и эффективный способ обработки изображений. И это не могло не заинтересовать исследователей в области робототехники.

Обнаружено, что мухи обрабатывают 100 кадров в секунду. И это позволяет им во время полета обнаружить препятствие в течение нескольких миллисекунд (миллисекунда – это одна тысячная секунды). В частности, исследователи сфокусировали своё внимание на оптических потоках, которые они назвали "оптические полевые потоки ". Похоже на то, что это оптическое поле обрабатывается только первым слоем нейронов. Они обрабатывают “грубый” исходный сигнал от каждого мушиного “пикселя” . И пересылают обработанную информацию на следующий слой нейронов. И, как утверждают исследователи, этих вторичных нейронов всего лишь 60 штук в каждом полушарии мушиного мозга. Тем не менее, мушиному мозгу удаётся уменьшить или раздробить поле зрения на множество протекающих последовательно “векторов движения”, которые дают мухе вектор направления движения и “мгновенную” скорость. И что интересно, то, что муха это всё видит!

Мы, люди (и не все), знаем что такое вектор и мгновенная скорость. А муха об этих вещах, естественно, не имеет никакого понятия. И таким способностям мозга мухи обрабатывать огромное количество информации можно только позавидовать. А почему мы видим всего лишь примерно 50 кадров в секунду, а муха 100? Трудно сказать, но есть разумные предположения на этот счёт. Как взлетает муха? Почти “мгновенно”, с огромным ускорением. Мы такую перегрузку врадли бы выдержали. Но можно создать роботизированный мозг, который по скорости обработки информационных потоков не уступит мозгу мухи.

Чтобы попытаться понять, как крошечный мушиный мозг может обрабатывать такое огромный поток информации, исследователи в Мюнхене создали “симулятор полета” для мухи. Муха могла летать, но удерживалось на привязи. Электроды регистрировали реакцию клеток мозга мухи. А исследователи пытались понять, что же происходит в мозге мухи во время полёта.

Первые результаты очевидны. Мухи обрабатывают изображения от их неподвижных глаз совсем не так, как это делает человек. При перемещении мухи в пространстве, в ее мозге формируются “оптические полевые потоки” (optical flux fields), которые и дают мухе направление движения.

Как бы это видел человек? Например, при движении вперёд, окружающие объекты мгновенно бы разбегались по сторонам. А объекты в поле зрения казались бы большими, чем они есть на самом деле. И казалось бы, что ближайшие и удалённые объекты перемещаются по-разному.

Скорость и направление, с которыми объекты мелькают перед мушиными глазами, генерируют типичные шаблоны векторов движения – полевые потоки. Которые на втором этапе обработки изображения достигают так называемой "lobula plate" – центра зрения более высокого уровня. В каждом полушарии мозга мухи есть всего лишь 60 нервных клеток, ответственных за зрение. Каждая из этих нервных клеток реагирует только на сигнал с определенной интенсивностью.

Но для анализа оптических потоков важна информация, поступающая от двух глаз одновременно. Эту связь обеспечивают особые нейроны, называемые “VS cells”. Они и позволяют мухе точно оценить своё местоположение в пространстве и скорость полёта. Похоже на то, что “VS cells” ответственны за распознавание и реакцию на вращающий момент, действующий на муху во время её манёвров в полёте.

Исследователи в области робототехники работают над тем, чтобы разработать роботов, которые могут наблюдать окружающую среду при помощи цифровых камер, изучать то, что они видят и адекватно реагировать на изменение текущей ситуации. И эффективно и безопасно общаться и взаимодействовать с людьми.

Например, уже ведутся разработки маленького летающего робота, положение и скорость полёта которого будет контролироваться при помощи компьютерной системы, имитирующей зрение мухи.

Удивительными, необычными глазами обладает обыкновенная муха!
Впервые люди смогли посмотреть на мир глазами насекомого в 1918 г. благодаря немецкому ученому Екснеру. Экснер доказал наличие необычного мозаичного зрения у насекомых. Он сфотографировал окно сквозь фасеточный глаз светляка, помещенный на предметное стекло микроскопа. На фотографии было видно изображение оконного переплета, а за ним расплывчатые очертания собора.

Сложные глаза мухи называются фасеточными, состоят они из многих тысяч крохотных, отдельных шестиугольных глазков-фасеток, называемых омматидиями. Каждый омматидий состоит из линзочки и примыкающего к ней длинного прозрачного кристаллического конуса.

У насекомых фасеточный глаз может иметь от 5000 до 25 000 фасеток. Глаз комнатной мухи состоит из 4000 фасеток. Острота зрения у мухи низкая, видит она в 100 раз хуже человека. Интересно, что у насекомых острота зрения зависит от числа фасеток в глазу!
Каждая фасетка воспринимает лишь часть изображения. Части складываются в одну картину, и муха видит "мозаичную картину" окружающего мира.

Благодаря этому муха имеет почти круговое поле зрения на 360 градусов. Она видит не только то, что находится впереди нее, но и то, что творится вокруг и сзади, т.е. крупные фасеточные глаза позволяют мухе одновременно смотреть в разные стороны.

В глазах мухи отражение и преломление света происходит таким образом, что максимальная его часть попадает внутрь глаза под прямым углом, вне зависимости от угла падения.

Фасеточный глаз - это растровая оптическая система, в которой в отличие от глаза человека нет единой сетчатки.
Каждый омматидий имеет свой диоптрический аппарат. Кстати, понятия аккомодации, близорукости или дальнозоркости для мухи не существует.

Муха, как и человек, видит все цвета видимого спектра. Кроме того муха способна различать ультрафиолет и поляризованный свет.

Понятия аккомодации, близорукости или дальнозоркости мухе не знакомы.
Глаза мухи очень чувствительны к изменению яркости света.

Изучение фасеточных глаз мухи показало инженерам, что муха способна очень точно определять скорость объектов, движущихся на огромной скорости. Инженеры скопировали принцип мушиных глаз для создания быстродействующих детекторов, определяющих скорость летящих самолетов. Такой прибор получил название "глаз мухи"

Панорамная камера «глаз мухи»

Ученые Федеральной политехнической школы Лозанны изобрели камеру с обзором на 360 градусов, позволяющую трансформировать изображение в формат 3D, не искажая его. Они предложили совершенно новую конструкцию, источником вдохновения послужило устройство глаза мухи.
По форме камера напоминает маленькую полусферу размером с апельсин, по поверхности расположены 104 мини-камеры, наподобие тех, что встроены в мобильные телефоны.

Эта панорамная камера дает трехмерное изображение на 360 градусов. Однако каждую из составных камер можно использовать и отдельно, перенося внимание зрителя на определенные участки пространства.
Этим изобретением ученые разрешили две основные проблемы традиционных кинокамер: неограниченного в пространстве ракурса и глубины резкости.


ГИБКАЯ КАМЕРА НА 180 ГРАДУСОВ

Группа исследователей из университета Иллинойса под руководством профессора Джона Роджерса создали фасетчатую камеру, работающую принципу глаза насекомого.
Новое устройство внешне, и по своиму внутреннему строению напоминает глаз насекомого.


Камера состоит из 180 крошечных линз, у каждой из которых есть свой собственный фотодатчик. Это позволяет каждой из 180 микрокамер действовать автономно, в отличие от обычных камер. Если проводить аналогию с миром животных, то 1 микролинза - это 1 фасетка глаза мухи. Далее данные в низком разрешении, полученные микрокамерами, поступают в процессор, где эти 180 маленьких картинок собираются в панораму, ширина которой соответствует углу обзора в 180 градусов.

Камера не требует фокусировки, т.е. объекты, находящиеся близко, видно так же хорошо, как и объекты, находящиеся вдали. Форма камеры может быть не только полусферической. Ей можно придать практически любую форму. . Все оптические элементы выполнены из эластичного полимера, который используют при изготовлении контактных линз.
Новое изобретение может найти широкое применение не только в системах охраны и наблюдения, но и в компьютерах нового поколения.

И у мух, и у пчел по пять глаз. Три простых глаза расположены в верхней части головы (можно сказать, на темени), а два сложных, или фасеточных - по бокам головы. Сложные глаза мух, пчел (а также бабочек, стрекоз и некоторых других насекомых) - предмет восторженного изучения ученых. Дело в том, что эти органы зрения устроены очень интересно. Они состоят из тысяч отдельных шестиугольников, или, говоря научным языком, фасеток. Каждая из фасеток — это миниатюрный глазок, который дает изображение отдельной части предмета. В сложных глазах комнатной мухи примерно 4000 фасеток, у рабочей пчелы - 5000, у трутня - 8000, у бабочки - до 17 000, у стрекозы - до 30 000. Получается, что глаза насекомых посылают в их мозг несколько тысяч изображений отдельных частей предмета, которые хотя и сливаются в изображение предмета в целом, но все же этот предмет выглядит как бы сложенным из мозаики.

Зачем нужны фасеточные глаза? Считается, что с их помощью насекомые ориентируются в полете. В то время как простые глаза предназначены для рассматривания предметов, находящихся вблизи. Так, если пчеле удалить или заклеить сложные глаза, то она ведет себя как слепая. Если же заклеиваются простые глаза, то кажется, что у насекомого замедленная реакция.

1,2 - Фасеточные (сложные) глаза пчелы или мухи
3
- три простых глаза пчелы или мухи

Пять глаз позволяют насекомым охватывать 360 градусов , то есть видеть все, что происходит спереди, с обоих боков и сзади. Может быть, поэтому к мухе так сложно подобраться незамеченным. А если учесть, что сложные глаза гораздо лучше видят движущийся предмет, чем неподвижный, то остается только удивляться, как у человека иногда все же получается прихлопнуть муху газетой!

Особенность насекомых с фасеточными глазами улавливать даже малейшее движение отображена в следующем примере: если пчелы и мухи усядутся вместе с людьми смотреть кинофильм, то им будет казаться, что двуногие зрители подолгу рассматривают один кадр, прежде чем перейти к рассматриванию следующего. Чтобы насекомые могли смотреть кино (а не отдельные кадры, наподобие фото), то пленку проектора нужно крутить в 10 раз быстрее.

Стоит ли завидовать глазам насекомых? Наверное, нет. К примеру, глаза мухи видят многое, но не способны к пристальному разглядыванию. Вот почему они обнаруживают пищу (каплю варенья, например), ползая по столу и буквально на нее натыкаясь. А пчелы из-за особенностей своего зрения не различают красный цвет - для них он черный, серый или синий.

Каждый из нас, кто хотя бы раз пытался избавиться от надоедливой мухи, бегая за ней с хлопушкой в руке, прекрасно знает, что задача эта не всегда легко выполнима, а иной раз и невыполнима вовсе. Реакция у серо-черной мелкой квартирантки, что надо. Дело в том, что вы не конкурент ей. Почему? Читайте статью, в которой мы все расскажем о крылатых надоедах.

В чем же превосходит нас эта мушка:

  • в скорости передвижения (более двадцати км в час),
  • в возможности уследить за ее быстрыми перемещениями.

Как видят мухи

Мы, представители рода человеческого, считающие себя такими совершенными и всемогущими, обладаем всего лишь бинокулярным зрением, позволяющим концентрировать внимание на конкретном объекте или на определённой узкой области впереди нас, и никак не способны видеть, что происходит у нас за спиной, а вот для мухи это не проблема, так как ее зрение панорамное, видит она все пространство на 360 градусов (каждый глаз способен давать обзор по 180 градусов).

Кроме того, эти насекомые не просто благодаря анатомическому строению своего зрительного аппарата могут видеть в разных направлениях сразу, но и способны целенаправленно обозревать пространство вокруг себя. И обеспечивается всё это расположенными по бокам двумя большими выпуклыми, хорошо выделяющимися на голове насекомого глазами. Столь огромное поле зрения обусловливает особую «проницательность» этих насекомых. Кроме того, на опознание предметов им нужно значимо меньше времени, чем нам, людям. Острота зрения у них также превосходит нашу человеческую в 3 раза.

Строение сложных глаз

Если рассмотреть глаз мухи под микроскопом, то можно увидеть, что составлен он, как мозаика, из множества мелких участков – фасеток – шестигранных структурных единиц, внешне по форме очень похожих на медовые соты. Такой глаз соответственно называют фасеточным , а сами фасетки по-другому называют еще омматидиями. В глазу мухи можно насчитать порядка четырех тысяч таких фасеток. Все они дают свое изображение (маленькую часть от целого), а мозг мухи формирует из них, как из пазлов, общую картину.

Панорамное, фасеточное зрение и бинокулярное, которое свойственно людям, имеют диаметрально противоположное назначение. Для насекомых, чтобы иметь возможность быстро ориентироваться и не только замечать приближение опасности , но и успевать ее избежать, важно не хорошо и четко видеть конкретный предмет, а, главным образом, осуществлять своевременное восприятие движений и изменений в пространстве.

Есть ещё одна любопытная особенность зрительного восприятия мухой окружающего мира, касаемая палитры цветов. Некоторые, такие привычные нашему глазу, из них насекомые не различают совсем, другие выглядят для них иначе, чем для нас, в других тонах. Что касается красочности окружающего пространства – мухи различают не только семь основных цветов, но и их тончайшие оттенки, потому что их глаза способны видеть не только видимый свет, но и ультрафиолет, который людям, увы, видеть не дано. Получается, что в зрительном восприятии мухи окружающий мир более радужный, чем у людей.

Необходимо отметить также, что, имея определенные преимущества зрительной системы, эти представители мира шестиногих (да, у них 3 пары ног) не могут видеть в темноте. Ночью они спят, так как их глаза не позволяют ориентироваться в тёмное время суток.

А ещё эти мелкие и шустрые существа замечают только некрупные и находящиеся в движении объекты. Насекомое не воспринимает такой большой объект, например, как человек. А вот приближение человеческой руки к мухе её глаза прекрасно видят и тотчас передают необходимый сигнал в мозг. Также и любую другую стремительно приближающуюся опасность им не составит труда увидеть, благодаря сложной и надёжной структуре глаз, позволяющей насекомому видеть пространство во всех направлениях одновременно – вправо, влево, вверх, назад и вперед и отреагировать соответствующим образом, спасая себя, поэтому их так сложно прихлопнуть.

Многочисленные фасетки позволяют мухе следить за очень быстро перемещающимися предметами с высокой четкостью изображения. Для сравнения, если зрение человека может воспринимать 16 кадров в секунду, то у мухи – 250 –300 кадров в секунду. Это свойство необходимо мухам, как уже описано, для улавливания движений со стороны, а также и для собственной ориентации в пространстве при быстром полете.

Количество глаз у мухи

Кстати, помимо двух больших сложных фасеточных глаз, у мухи есть ещё три простых, расположенных на лобной части головы в промежутке между фасеточными. В противовес сложным, эти три нужны для того, чтобы видеть объекты на близком расстоянии, т. к. сложный глаз в этом случае оказывается бесполезен.

Таким образом, на вопрос, сколько же глаз у комнатной мухи, мы теперь можем точно ответить, что их пять:

  • два фасеточных (сложных), состоящих из тысяч омматидиев и необходимых для получения информации о быстро меняющихся в пространстве событиях,
  • и три простых глаза, позволяющих как бы наводить резкость.

Фасеточные глаза расположены у мух по бокам головы , причем у самок расположение органов зрения несколько расширено (разделено широким лбом), у самцов же глаза находятся немного ближе друг к другу.

Ещё в далёком детстве многие из нас задавались столь пустяковыми, казалось бы, вопросам о насекомых, вроде таких, как: сколько глаз у обыкновенной мухи, почему паук плетёт паутину, а оса может укусить.

Наука энтомология имеет ответы практически на любые из них, но сегодня мы призовём знания исследователей природы и поведения для того, чтобы разобраться с вопросом, что собой являет зрительная система этого вида.

Мы проанализируем в этой статье, как видит муха и почему это назойливое насекомое так трудно прихлопнуть мухобойкой или поймать ладошкой на стене.

Комнатная жительница

Комнатная или домашняя муха относится к семейству настоящих мух. И пусть тема нашего обзора касается всех видов без исключения, мы позволим себе для удобства рассматривать всё семейство на примере именно этого столь хорошо всем знакомого вида домашних нахлебников.

Обыкновенная домашняя муха является весьма непримечательным внешне насекомым. Она имеет серо-чёрную окраску туловища, с некоторыми намёками на желтизну в нижней части брюшка. Длина взрослой особи редко превышает 1 см. Насекомое имеет две пары крыльев и фасеточные глаза.

Фасеточные глаза — в чём суть?

Зрительная система мухи включает в себя два больших глаза, расположенных по краям головы. Каждый из них имеет сложную структуру и состоит из множества мелких шестигранных фасеток, отсюда и название такого типа зрения, как фасеточное.


Всего мушиный глаз имеет в своей структуре более 3,5 тысячи таких микроскопических составляющих. И каждая из них способна улавливать лишь мизерную часть общего изображения, передавая информацию о полученной мини-картинке в мозг, который собирает все пазлы этой картины воедино.

Если сравнивать фасеточное зрение и бинокулярное, которым располагает человек, например, можно быстро убедиться в том, что предназначение и свойства каждого диаметрально противоположны.

Более развитым животным свойственно концентрировать зрение на определённой узкой области или на конкретном объекте. Насекомым же важно не столько видеть конкретный предмет, сколько быстро ориентироваться в пространстве и замечать приближение опасности.

Почему её так сложно поймать?

Этого вредителя действительно очень непросто застать врасплох. Причина не только в повышенной реакции насекомого в сравнении с медлительным человеком и способности срываться с места практически мгновенно. Главным образом, столь высокий уровень реакции обусловлен своевременным восприятием мозга этого насекомого изменений и движений в радиусе обзора его глаз.

Зрение мухи позволяет ей видеть практически на 360 градусов. Такой тип зрения называется ещё панорамным. То есть каждый глаз даёт обзор на 180 градусов. Этого вредителя практически нельзя застать врасплох, даже если подходить к ней сзади. Глаза этого насекомого позволяют контролировать всё пространство вокруг неё, тем самым обеспечивая стопроцентную круговую зрительную оборону.

Есть ещё интересная особенность зрительного восприятия мухой палитры цветов. Ведь почти все виды иначе воспринимают те или иные цвета, привычные нашему глазу. Некоторые из них насекомые не различают вообще, другие выглядят для них иначе, в других тонах.

Кстати, помимо двух фасеточный глаз, у мухи имеются ещё три простых глаза. Они расположены в промежутке между фасеточными, на лобной чисти головы. В отличие от сложных глаз, эти три используются насекомым для распознавания того или иного объекта в непосредственной близости.

Таким образом, на вопрос, сколько все-таки глаз у обыкновенной мухи, можем теперь смело ответить – 5. Два сложных фасеточных, разделённых на тысячи омматидиев (фасеток) и предназначенных для максимально обширного контроля за изменениями окружающей среды вокруг неё, и три простых глаза, позволяющих, что называется, наводить резкость.

Взгляд на мир

Мы уже говорили, что мухи дальтоники, и различают либо не все цвета, либо видят привычные нам предметы в других цветовых тонах. Также этот вид способен различать ультрафиолет.

Следует ещё сказать, что при всей уникальности своего зрения эти вредители практически не видят в темноте. Ночью муха спит, поскольку её глаза не позволяют этому насекомому промышлять в тёмное время суток.

А ещё эти вредители имеют свойство хорошо воспринимать только более мелкие и находящиеся в движении объекты. Насекомое не различает такие большие предметы, как человек, например. Для мухи это не более чем ещё одна часть интерьера окружающей среды.

А вот приближение руки к насекомому его глаза прекрасно улавливают и своевременно дают нужный сигнал мозгу. Так же, как и увидеть любую другую стремительно надвигающуюся опасность не составит труда этим пронырам, благодаря сложной и надёжной системе слежения, которой снабдила их природа.

Заключение

Вот мы и проанализировали, как выглядит мир глазами мухи. Теперь мы знаем, что эти вездесущие вредители обладают, как и все насекомые, удивительным зрительным аппаратом, позволяющим им не терять бдительности, и в светлое время суток держать круговую наблюдательную оборону на все сто.

Зрение обыкновенной мухи напоминает сложную систему слежения, включающую в себя тысячи мини-камер наблюдения, каждая из которых предоставляет насекомому своевременную информацию о том, что происходит в ближайшем диапазоне.





error: Контент защищен !!