Антидоты прямого действия все кроме. Использование антидотов в медицинской практике. Характеристика современных антидотов

В составе механизма их действия лежит непосредственная реакция между ядом и антидотом. Химические антидоты могут быть как местного, так и резорбтивного действия.

Местное действие. Если физические антидоты оказывают малоспецифический антидотный эффект, то химические обладают довольно высокой специфичностью, что связано с самим характером химической реакции. Местное действие химических антидотов обеспечивается в результате реакций нейтрализации, образования нерастворимых соединений, окисления, восстановления, конкурентного замещения и образования комплексов. Первые три механизма действия имеют особую важность и изучены лучше других.

Хорошим примером нейтрализации ядов служит использование щелочей для противодействия случайно проглоченным или попавшим на кожу сильным кислотам. Нейтрализующие антидоты применяются и для осуществления реакций, в результате которых образуются соединения, имеющие низкую биологическую активность. Например, в случае попадания в организм сильных кислот рекомендуется провести промывание желудка теплой водой, в которую добавлен оксид магния (20 г/л). В случае отравления плавиковой или лимонной кислотой больному дают проглотить кашицеобразную смесь хлорида кальция и оксида магния. При попадании едких щелочей следует провести промывание желудка 1 % раствором лимонной или уксусной кислоты. Во всех случаях попадания в организм едких щелочей и концентрированных кислот следует иметь в виду, что рвотные средства противопоказаны. При рвоте происходят резкие сокращения желудочных мышц, а поскольку эти агрессивные жидкости могут поразить желудочную ткань, возникает опасность прободения.

Антидоты, образующие нерастворимые соединения, которые не могут проникнуть через слизистые оболочки или кожу, обладают избирательным действием, т. е. эффективны только в случае отравления определенными химическими веществами. Классическим примером антидотов такого типа могут служить 2,3–димеркаптопропанол, образующий нерастворимые, химически инертные сульфиды металлов. Он дает положительный эффект при отравлении цинком, медью, кадмием, ртутью, сурьмой, мышьяком.

Таннин (дубильная кислота) образует нерастворимые соединения с солями алкалоидов и тяжелых металлов. Токсиколог должен помнить, что соединения таннина с морфином, кокаином, атропином или никотином обладают различной степенью стабильности.

После приема любых антидотов этой группы необходимо производить промывание желудка для выведения образовавшихся химических комплексов.

Большой интерес представляют антидоты комбинированного действия, в частности состав, в который входят 50 г таннина, 50 г активированного угля и 25 г оксида магния. В этом составе сочетаются антидоты как физического, так и химического действия.

В последние годы привлекает к себе внимание местное применение тиосульфата натрия. Он используется в случаях отравления мышьяком, ртутью, свинцом, цианистым водородом, солями брома и йода.

Тиосульфат натрия применяется внутрь в виде 10 %-го раствора (2–3 столовые ложки).

Местное применение антидотов при указанных выше отравлениях следует сочетать с подкожными, внутримышечными или внутривенными инъекциями.

В случаях попадания в организм опия, морфина, аконита или фосфора широко применяется окисление твердого вещества. Наиболее распространенным антидотом для этих случаев является перманганат калия, который применяется для промывания желудка в виде 0,02–0,1 %-го раствора. Этот препарат не дает эффекта при отравлении кокаином, атропином и барбитуратами.

Резорбтивное действие. Резорбтивные антидоты химического действия можно подразделить на две основные подгруппы:

a) антидоты, вступающие во взаимодействие с некоторыми промежуточными продуктами, образующимися в результате реакции между ядом и субстратом;

б) антидоты, непосредственно вмешивающиеся в реакцию между ядом и определенными биологическими системами или структурами. В этом случае химический механизм часто бывает связан с биохимическим механизмом антидотного действия.

Антидоты первой подгруппы применяются в случае отравления цианидами. До настоящего времени не существует антидота, который подавлял бы взаимодействие между цианидом и подверженной его влиянию ферментной системой. После всасывания в кровь цианид переносится кровотоком к тканям, где взаимодействует с трехвалентным железом окисленной цитохром-оксидазы одного из ферментов, необходимых для тканевого дыхания. В результате кислород, поступающий в организм, прекращает реагировать с ферментной системой, что вызывает острое кислородное голодание. Однако комплекс, образуемый цианидом с железом цитохромоксидазы, нестабилен и легко диссоциирует.

Следовательно, лечение антидотами протекает в трех основных направлениях:

1) нейтрализация яда в кровотоке немедленно после его поступления в организм;

2) фиксация яда в кровотоке с целью ограничения количества яда, поступающего в ткани;

3) нейтрализация яда, поступающего в кровь, после диссоциации цианометгемоглобина и комплекса цианида и субстрата.

Прямую нейтрализацию цианидов можно обеспечить путем введения глюкозы, реагирующей с синильной кислотой, в результате чего образуется слаботоксичный циангидрид. Более активным антидотом является ß-оксиэтил-метилендиамин. Оба антидота следует вводить внутривенно в течение нескольких минут или секунд после попадания яда в организм.

Более распространенным является метод, при котором ставится задача фиксации яда, циркулирующего в кровотоке. Цианиды не взаимодействуют с гемоглобином, но активно сочетаются с метгемоглобином, образуя цианометгемоглобин. Хотя он не отличается высокой стабильностью, но некоторое время может сохраниться. Поэтому в данном случае необходимо вводить антидоты, способствующие образованию метгемоглобина. Осуществляется это путем вдыхания паров амилнитрита или внутривенного введения раствора нитрита натрия. В результате свободный цианид, присутствующий в плазме крови, связывается в комплекс с метгемоглобином, теряя в значительной степени свою токсичность.

Необходимо иметь в виду, что антидоты, образующие метгемоглобин, могут влиять на артериальное давление: если амилнитрит вызывает выраженное, кратковременное падение давления, то нитрит натрия оказывает продолжительное гипотоническое действие. При введении веществ, образующих метгемоглобин, следует учитывать, что он не только принимает участие в переносе кислорода, но и сам может стать причиной кислородного голодания. Поэтому применение антидотов, образующих метгемоглобин, должно подчиняться определенным правилам.

Третий метод лечения антидотами заключается в нейтрализации цианидов, высвобожденных из комплексов с метгемоглобином и цитохром-оксидазой. С этой целью производится внутривенное взбрызгивание тиосульфата натрия, преобразующего цианиды в нетоксические тиоцианаты.

Специфичность химических антидотов ограничена, поскольку они не влияют на прямое взаимодействие между ядом и субстратом. Однако воздействие, которое такие антидоты оказывают на определенные звенья механизма токсического действия, имеет несомненное терапевтическое значение, хотя применение этих антидотов требует высокой врачебной квалификации и предельной осторожности.

Химические антидоты, непосредственно взаимодействующие с токсичным веществом, отличаются высокой специфичностью, позволяющей им связывать токсические соединения и выводить их из организма.

Комплексообразующие антидоты образуют стабильные соединения с двух- и трехвалентными металлами, которые затем легко выводятся с мочой.

В случаях отравления свинцом, кобальтом, медью, ванадием большой эффект дает двунатриевокальциевая соль этилендиаминтетрауксусной кислоты (ЭДТА). Кальций, содержащийся в молекуле антидота, реагирует только с металлами, образующими более стабильный комплекс. Эта соль не реагирует с ионами бария, стронция и некоторых других металлов с более низкой константой устойчивости. Имеется несколько металлов, с которыми этот антидот образует токсичные комплексы, поэтому его следует применять с большой осторожностью; в случае отравления кадмием, ртутью и селеном применение этого антидота противопоказано.

При острых и хронических отравлениях плутонием и радиоактивными йодом, цезием, цинком, ураном и свинцом применяется пентамил. Данный препарат применяется также в случаях отравления кадмием и железом. Его применение противопоказано лицам, страдающим нефритом и сердечно-сосудистыми заболеваниями. Комплексообразующие соединения в целом включают также антидоты, молекулы которых содержат свободные меркаптогруппы – SH. Большой интерес в этом плане представляют димеркаптопром (БАЛ) и 2,3-димер­каптопропансульфат (унитиол). Молекулярная структура этих антидотов сравнительна проста:

H 2 C – SH H 2 C – SH | |

HC – SH HC – SH

H 2 C – OH H 2 C – SO 3 Na

БАЛ Унитиол

В обоих этих антидотах имеются две SH-группы, близкие друг к другу. Значение данной структуры раскрывается в приводимом ниже примере, где антидоты, содержащие SH-группы, реагируют с металлами и неметаллами. Реакцию димеркаптосоединений с металлами можно описать следующим образом:

Фермент + Me → фермент Ме

HSCH 2 S – CH 2

HSCH + фермент Me → фермент + Me– S – CH

HOCH 2 OH–CH 2

Здесь можно выделить следующие фазы:

а) реакция ферментных SH-групп и образование малоустойчивого комплекса;

б) реакция антидота с комплексом;

в) высвобождение активного фермента благодаря образованию комплекса металл-антидот, выводящегося с мочой. Унитиол менее токсичен, чем БАЛ. Оба препарата применяются при лечении острых и хронических отравлений мышьяком, хромом, висмутом, ртутью и некоторыми другими металлами, но не свинцом. Не рекомендуется при отравлении селеном.

Для лечения отравлений никелем, молибденом и некоторыми другими металлами эффективных антидотов не существует.

2.6.3. Антидоты биохимического действия

Эти препараты отличаются высокоспецифичным антидотным эффектом. Для этого класса типичны антидоты, применяемые при лечении отравлений фосфорорганическими соединениями, являющимися основными компонентами инсектицидов. Даже очень небольшие дозы фосфорорганических соединений подавляют функцию холинэстеразы в результате ее фосфорилирования, что приводит к накоплению ацетилхолина в тканях. Поскольку ацетилхолин имеет огромное значение для передачи импульсов как в центральной, так и в периферической нервной системе, его чрезмерное количество ведет к нарушению нервных функций, и, следовательно, к серьезным патологическим изменениям.

Антидоты, восстанавливающие функцию холинэстеразы, принадлежат к производным гидроксамовых кислот и содержат оксимную группу R – CH = NOH. Практическое значение имеют оксимные антидоты 2–ПАМ (пралидоксим), дипироксим (ТМБ – 4) и изонитрозин. При благоприятных условиях эти вещества могут восстановить функцию фермента холинэстеразы, ослабляя или ликвидируя клинические признаки отравления, предотвращая отдаленные последствия и способствуя успешному выздоровлению.

Практика, однако, показала, что наилучшие результаты достигаются в тех случаях, когда биохимические антидоты применяются в сочетании с антидотами физиологического действия.

  • II. Понятие развития имеет ограниченное применение для науки истории и часто служит причиной помех и препятствий
  • Адаптация и дезадаптация при экстремальных ситуациях. Понятие ресурсов.
  • Атаксия, ее виды. Понятие динамической и статистической атаксии.
  • Виды изменчивости бактерий. Фенотипическая и генотипическая изменчивость. Понятие о популяционной изменчивости.
  • Вопрос 1. Понятие и методы диагностики функциональных состояний
  • Гормонанальная регуляция функций организма. Понятие о диффузной эндокринной системе. Гормонов поджелудочной железы и их функции.
  • РЕФЕРАТ

    на тему:

    __________________________________________________________

    Выполнил: студент 23 группы

    А.А.Фирман

    Проверил:

    г.Новосибирск, 2010 г.

    1. Понятие антидота

    2. Отравляющие вещества замедленного действия

    3. Антидотная терапия при поражении веществами замедленного действия

    Понятие антидота

    Противоя́дие или антидо́т (от др.-греч. ἀντίδοτον, букв. - даваемое против) - лекарственное средство, прекращающее или ослабляющее действие яда на организм.

    Антидоты (противоядия) - вещества, способные уменьшать токсичность яда путем физического или химического воздействия на него или конкуренцией с ним при действии на ферменты и рецепторы.

    Выбор антидота определяется типом и характером действия веществ, вызвавших отравление, эффективность применения зависит от того, насколько точно установлено вещество, вызвавшее отравление, а также от того, как быстро оказана помощь.

    В зависимости от механизма действия выделяют несколько групп антидотов:

    · Сорбенты - антидоты, действие которых основано на физических процессах (активированный уголь, вазелиновое масло, полифепан).

    · Антидоты, обезвреживающие яд путем химического взаимодействия с ним (перманганат калия, гипохлорид натрия), что приводит к образованию менее токсичных веществ.

    Антидоты предназначены для того, чтобы влиять на кинетику попавшего в организм токсичного вещества, на его абсорбцию или элиминацию, снижать действие яда на рецепторы, препятствовать опасному метаболизму, устранять угрожающие расстройства функций органов и систем, вызванные отравлением. В клинической практике антидоты и другие лекарства, используемые при отравлениях, применяются параллельно с общереанимационными и детоксикационными методами лечения. И в тех случаях, когда нельзя провести реанимационные мероприятия, жизнь пострадавшего можно спасти только введением антидота.

    В настоящее время антидоты разработаны лишь для ограниченной группы токсикантов. В соответствии с видом антагонизма к токсиканту они могут быть классифицированы на несколько групп (таблица 1).

    Таблица 1. Противоядия, используемые в клинической практике

    Вид антагонизма Противоядия Токсикант
    1.Химический ЭДТА, унитиол и др. Со-ЭДТА и др. азотисто-кислый Na амилнитрит диэтиламинофенол антитела и Fab- фрагменты тяжелые металлы цианиды, сульфиды -//- -//- гликозиды ФОС паракват токсины
    2.Биохимический кислород реактиваторы ХЭ обратим. ингибит. ХЭ пиридоксин метиленовый синий СО ФОС ФОС гидразин метгемоглобино-образователи
    3.Физиологический атропин и др. аминостигмин и др. сибазон и др. флюмазенил налоксон ФОС, карбаматы холинолитики, ТАД, нейролептики ГАМК-литики бензодиазепины опиаты
    4.Модификация метаболизма тиосульфат Na ацетилцистеин этанол 4-метилпиразол цианиды ацетаминофен метанол, этиленгликоль

    Истинных антидотов, то есть веществ, которые полностью нивелировали бы действие яда в организме, нет.

    Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

    Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

    Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

    Антидоты бывают прямого и непрямого действия.

    Антидот прямого действия

    Прямого действия - осуществляется непосредственное химическое или физико - химическое взаимодействие яда и противоядия.

    Основные варианты - сорбентные препараты и химические реагенты.

    Сорбентные препараты - защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат - снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта.

    Сорбция происходит за счет неспецифических межмолекулярных взаимодействий - водородных и Ван - дер - Ваальсовых связей (не ковалентных!).

    Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно.

    Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

    1 грамм активного угля связывает несколько сотен мг стрихнина.

    Химические противоядия - в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

    Примеры химических противоядий:

    для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K2CO3, NaHCO3, MgO.

    при отравлении растворимыми солями серебра (например AgNO3) используют NaCl, который образует с солями серебра нерастворимый AgCl.

    при отравлении ядами, содержащими мышьяк используют MgO, сульфат железа, которые химически связывают его

    при отравлении марганцовокислым калием KMnO4 , который является сильным окислителем, используют восстановитель - перекись водорода H2O2

    при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

    отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO4, при реакции получается мало растворимый CaF2

    при отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой.

    Очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

    Связывание металла с тиоловыми группами белков приводит к разрушению структуры белка, что вызывает прекращение его функций. Результат - нарушение работы всех ферментных систем организма.

    Для нейтрализации тиоловых ядов применяются дитиоловые антидоты (доноры SH- групп). Механизм их действия представлен на схеме.

    Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

    Еще один класс антидотов прямого действия - антидоты - комплексоны (комплексообразователи).

    Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

    Антидот непрямого действия

    Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

    1) Защита рецепторов от токсичного воздействия.

    Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

    Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц. При избытке ацетилхолина происходит беспорядочное сокращение мышц - судороги, которые часто приводят к смерти.

    Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется, судорог не происходит.

    2) Восстановление или замещение поврежденной ядом биоструктуры.

    При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие - CaCl2.

    3) Антиоксиданты.

    Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты - вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

    4) Конкуренция с ядом за связывание с ферментом.

    Отравление метанолом:

    При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

    Летальный синтез - превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные.

    Этиловый спирт C2H5OH лучше связывается с ферментом алкогольдегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

    1. Оксид углерода (II ) - угарный газ (СО)

    1.1 Антропогенные источники поступления

    Бытовые источники (неполное сгорание газа в плитах и топлива в печах);

    Пожары (опасность отравления СО; 50% гибели при пожарах - отравление СО);

    Химическая промышленность (производство аммиака, соды, синтез метанола, производство

    синтетических волокн, кокса);

    Металлургическая промышленность (производство стали);

    - автотранспорт (более половины антропогенного СО).

    a. Механизм токсичного действия.

    СО соединяется с гемоглобином, образуя карбоксигемоглобин нарушается способность крови к переносу кислорода (О2) недостаток кислорода в организме.

    b. Острое отравление.

    При вдыхании концентрации до 1000 мг/м 3 - тяжесть и ощущение сдавливания головы, сильная боль во лбу и висках, головокружение, шум в ушах, покраснение и жжение кожи лица, дрожь, чувство слабости и страха, жажда, учащение пульса, ощущение недостатка воздуха, тошнота, рвота. В дальнейшем при сохранении сознания - оцепенелость, слабость и безучастность, ощущение приятной истомы, затем нарастает сонливость и оцепенение, смутность сознания, человек теряет сознание. Далее - одышка и смерть от остановки дыхания.

    При концентрации 5 000 мг/м 3 - за 20-30 минут - слабый пульс, замедление и остановка дыхания, смерть.

    При концентрации 14 000 мг/м 3 - за 1-3 минуты - потеря сознания, рвота, смерть.

    c. Хроническое отравление.

    Головные боли, головокружение, слабость, тошнота, исхудание, отсутствие аппетита; при длительном контакте - нарушение сердечно-сосудистой системы, одышка, боли в области сердца.

    d. Нормативы.

    ПДК (мг/м 3):

    ПДКр.з. (в течение рабочего дня) 20,0

    60 минут 50,0

    15 минут 200,0

    ПДКм.р. 5,0

    4-й класс опасности.

    2. Циановодород - HCN - синильная кислота

    2.1 Антропогенные источники поступления

    Химическая и металлургическая промышленность; горение полимеров.

    Синильная кислота и ее соли присутствуют в сточных водах рудообогатительных фабрик, рудников, приисков, гальванических цехов, металлургических заводов.

    2.2 Токсичность солей синильной кислоты

    Токсичность солей HCN - за счет образования HCN при их гидролизе. Циановодород вызывает быстрое ухудшение состояния из-за блокирования дыхательных ферментов в клетках (блокирование цитохромоксидазы в митохондриях). Клетки не могут потреблять кислород и поэтому гибнут.

    2.3 Острое отравление

    1 мг/м 3 - запах.

    При высоких концентрациях (более 10 000 мг/м 3) - почти мгновенная потеря сознания, паралич дыхания и сердца.

    При меньших концентрациях происходит несколько стадий отравления:

    1) Начальная стадия: царапанье в горле, жгуче-горький вкус во рту, слюнотечение, онемение рта, мышечная слабость, головокружение, острая головная боль, тошнота, рвота.

    2) Вторая стадия: постепенно усиливается общая слабость, боли и чувство стеснения в области сердца, замедление пульса, сильная одышка, тошнота, рвота (стадия одышки).

    3) Стадия судорог: чувство тоски, усиливающаяся одышка, потеря сознания, сильные судороги.

    4) Стадия паралича: полная потеря чувствительности и рефлексов, непроизвольное мочеиспускание и дефекация, остановка дыхания, смерть.

    2.4 Хроническое отравление

    Головная боль, слабость, быстрая утомляемость, повышение общего недомогания, нарушение координации движений, потливость, повышенная раздражительность, тошнота, боли в подложечной области, боли в сердце.

    2.5 ПДК для HCN и его солей (в пересчете на циановодород)

    ПДКр.з. 0,3 мг/м 3

    ПДКс.с. 0,01 мг/м 3

    ПДКв. (в воде водоисточников) 0,1 мг/л

    1-й класс опасности.

    3. Оксиды азота (NO и NO 2)

    3.1 Антропогенные источники поступления

    Сгорание ископаемого топлива;

    Транспорт;

    Производство азотной и серной кислот;

    Бактериальное разложение силоса.

    3.2 Токсическое действие

    NO - кровяной яд, препятствует переносу кислорода гемоглобином.

    NO2 - выраженное раздражающее и прижигающее действие на дыхательные пути, приводит к развитию отека легких; тиоловый яд, блокирует SH-группы белков.

    3.3 Острое отравление

    NO - общая слабость, головокружение, онемение ног. При более сильном отравлении - тошнота, рвота, усиление слабости и голокружения, снижение кровяного давления. При тяжелом отравлении - синюшность губ, слабый пульс, легкий озноб. Через несколько часов - улучшение состояния, через 1-3 дня - резкая слабость, сильная головная боль, онемение рук и ног, сонливость, головокружение.

    При 8 мг/м3 - запах и небольшое раздражение.

    При 14 мг/м3 - раздражение глаз и носа.

    Вдыхание в течение 5 минут 510-760 мг/м 3 - пневмония.

    950 мг/м3 - отек легких в течение 5 минут.

    Для острого отравления характерны две фазы:

    Сначала - отек, затем - бронхит и его последствия.

    3.4 Хроническое отравление

    NO: нарушение функций органов дыхания и кровообращения;

    NO2: воспаление слизистой оболочки десен, хронический бронхит.

    3.5 Нормативы

    ПДКм.р. 0,4 мг/м 3 ПДКмр. 0,085 мг/м 3

    ПДКс.с. 0,06 мг/м 3 ПДКс.с. 0,04 мг/м 3

    3-й класс опасности 2-й класс опасности

    4. Оксид серы (IV ) - сернистый газ SO 2

    4.1 Антропогенные источники поступления

    Сжигание угля и нефтепродуктов:

    80% - в промышленности и быту;

    19% - металлургия;

    1% - транспорт.

    Min S - природный газ, max S - уголь, нефть (зависит от сорта).

    В металлургии - при выплавке меди, цинка, свинца, никеля; из сульфидных руд (колчеданов)

    4.2 Механизм действия

    Оказывает многостороннее общетоксическое действие. Нарушает углеводный и белковый обмен, ингибирует ферменты. Обладает раздражающим действием. Нарушает функцию печени, желудочно-кишечного тракта, сердечно-сосудистой системы, почек.

    4.3 Острое отравление

    В лекгих случаях (концентрация ~ 0,001 % по объему) - раздражение верхних дыхательных путей и глаз. Слезотечение, чихание, першение в горле, кашель, осиплость голоса. При поражение средней тяжести: общая слабость, сухой кашель, боль в носу и горле, тошнота, боли в подложечной области, носовые кровотечения. В тяжелых случаях - острое удушье, мучительный кашель, отек легких, смерть.

    4.4 Хроническое отравление

    Нарушение дыхательной, сердечно-сосудистой систем и желудочно-кишечного тракта. Одна из форм поражения - бронхиты: кашель, боли в груди, одышка, слабость, утомляемость, потливость. Поражение печени - токсический гепатит - тяжесть и боль в правой подреберной области, тошнота, горечь во рту. Поражение желудка - боль натощяк или после еды, изжога, тошнота, снижение аппетита, язва желудка и двенадцатиперстной кишки.

    4.5 Нормативы

    ПДКр.з. 10 мг/м 3

    ПДКм.р. 0,5 мг/м 3

    ПДКс.с. 0,05 мг/м 3

    2-й класс опасности.

    5 . Мышьяк (As )

    5.1.Антропогенные источники загрязнения

    Металлургия (мышьяк - примесь во многих рудах): производство Pb, Zn, Ni, Cu, Sn, Mo, W;

    Производство серной кислоты и суперфосфата;

    Сжигание каменного угля, нефти, торфа;

    Производство мышьяка и As-содержащих ядохимикатов;

    Кожевенные заводы.

    Выбросы в воздух с дымом и со сточными водами.

    5.2 Токсическое действие

    Тиоловый яд широкий спектр действия:

    Нарушение обмена веществ;

    Повышение проницаемости стенок сосудов разрушение эритроцитов (гемолиз);

    Разрушение тканей в месте их прямого контакта с мышьяком;

    Канцерогенное действие;

    Эмбриотоксический и тератогенный эффект.

    5.3 Острое отравление

    В легких случаях - общее недомогание, головная боль, тошнота; затем - боли в правом подреберье и пояснице, тошнота, рвота.

    Тяжелые отравления:

    При поступлении через рот - металлический привкус, жжение и сухость во рту, боли при глотании через несколько часов после отравления.

    При поступлении через органы дыхания - раздражение верхних дыхательных путей и глаз - слезы, чихание, кашель, кровохарканье, боль в груди, отек лица и век.

    Затем - сильная слабость, головокружение, головная боль, тошнота, рвота, боли в животе, онемение пальцев рук и ног. Затем - неукротимая рвота с кровью, судороги, носовые кровотечения, кровоизлияния в различных частях тела.

    Через 8-15 дней - резкие боли в конечностях, резкая слабость, сонливость, сильные головные боли, судороги, паралич, смерть от паралича дыхания.

    5.4 Хроническое отравление

    Повышенная утомляемость, исхудание, тошнота, головокружение, боли в конечностях, желудке, кишечнике, груди, горле, кашель, отек лица и век. Выпадение волос и ногтей, кровоизлияние, потемнение кожи. Раздражительность, рвота, неустойчивый стул, отсутствие аппетита.

    5.5 Нормативы

    Мышьяк и его неорганические соединения (в пересчете на мышьяк):

    ПДКс.с. 0,003 мг/м 3

    ПДКв. (воды) 0,05 мг/л

    2-й класс опасности.

    6 . Ртуть (Hg )

    6.1 Антропогенные источники поступления

    Получение ртути и ртутьсодержащих веществ;

    Сжигание органического топлива;

    Цветная металлургия;

    Коксование угля;

    Производство хлора и соды;

    Сжигание мусора.

    Поступление: в виде паров, водорастворимость солей и органических соединений.

    6.2. Токсическое действие

    Тиоловый яд широкий спектр действия.

    Проявление токсического эффекта зависит от формы, в которой ртуть поступила в организм.

    Особенность паров ртути - нейтротоксичноть, действие на высшую нервную деятельность.

    6.3. Острое отравление

    Пары ртути:

    Симптомы появляются через 8-24 часа после отравления.

    Общая слабость, головная боль, боль при глотании, повышение температуры, кровоточивость, воспаление в полости рта, боли в животе, поражение желудка (тошнота, рвота, жидкий стул), поражение почек.

    6.4 Хроническое отравление

    В основном - действие на центральную нервную систему.

    Снижение работоспособности, быстрая утомляемость, повышенная возбудимость. Ослабление памяти, беспокойство, неуверенность в себе, раздражительность, головные боли.

    Далее - слабость, сонливость, апатия, эмоциональная неустойчивость, дрожание рук, языка, век (в тяжелых случаях всего тела). Повышенная психическая возбудимость, пугливость, общая подавленность, упрямость и раздражительность, ослабление памяти, невралгия.

    6.5. Нормативы

    Металлическая ртуть (пары):

    ПДКр.з. 0,01 мг/м 3

    ПДКс.с. 0,0003 мг/м 3

    1-й класс опасности.

    7 . Свинец (Pb )

    7.1 Антропогенные источники поступления

    Свинцовые и свинцово-цинковые заводы (цветная металлургия);

    Выхлопные газы автомобилей (тетраэтил свинец добавляют для повышения октанового числа);

    Сточные воды следующих производств: металлообрабатывающего, машиностроительного,

    нефтехимического, спичечного, фотоматериалов;

    Сжигание каменного угля и бытового мусора.

    7.2 Токсическое действие

    Тиоловый яд, но менее токсичен, чем ртуть и мышьяк.

    Поражает ЦНС, периферическую нервную систему, костный мозг, кровь, сосуды, генетический аппарат, клетки.

    7.3 Острое отравление

    Острые (отравление солями свинца): схваткообразные боли в животе, запор, общая слабость, головокружение, боли в конечностях и пояснице.

    7.4 Хроническое отравление

    Внешне: свинцовая (черная) кайма по краю десен, землисто-серая окраска кожи.

    Изменение нервной системы.: головная боль, головокружение, утомляемость, раздражительность, нарушение сна, ухудшение памяти, эпилептические припадки.

    Двигательные расстройства: параличи отдельных мышц, дрожания рук, век и языка; боли в конечностях, изменения системы крови - свинцовая анемия, обменные и эндокринные нарушения, нарушения желудочно-кишечного тракта, сердечно-сосудистой системы.

    7.5 Нормативы

    Pb металл. ПДКр.з. 0,01 мг/м 3 , соли Pb ПДКс.с. 0,0003 мг/м 3 ,

    ПДКс.с. 0,003мг/м 3 .

    2-й класс опасности.

    8 . Хром (Cr )

    8.1 Антропогенные источники поступления

    Выбросы предприятий, где добывают, получают, перерабатывают и применяют хром (в том числе гальванические и кожевенные производства).

    8.2 Токсическое действие

    Токсичность зависит от валентности:

    Cr (VI) > Cr (III) > Cr (II)

    Поражает почки, печень, поджелудочную железу, обладает канцерогенным эффектом. Раздражающее действие, Cr (VI) - аллерген.

    8.3 Острое отравление

    Аэрозольные соединения Cr (VI), хроматы, бихроматы - насморк, чихание, носовые кровотечения, раздражение верхних дыхательных путей; в тяжелых случаях - острая почечная недостаточность.

    8.4 Хроническое отравление

    Поражение верхних дыхательных путей и развитие бронхитов и бронхиальной астмы; поражение печени (нарушение функций, развитие цирроза), аллергические заболевания кожи - дерматиты, язвы, «хромовые экземы».

    Хроматы - главная причина производственных контактных дерматитов на кистях рук, предплечьях, лице, веках.

    При длительном контакте с соединениями хрома возрастает вероятность раковых заболеваний.

    8.5 Нормативы

    Cr+6 в пересчете на CrO3 (хроматы, бихроматы):

    ПДКм.р. 0,0015 мг/м 3

    ПДКс.с. 0,0015 мг/м 3

    1-й класс опасности.

    9 . Медь (Cu )

    9.1 Антропогенные источники поступления

    Предприятия цветной металлургии;

    Гальванические производства;

    Сжигание угля и нефти.

    9.2 Токсическое действие

    Тиоловый яд

    9.3 Острое отравление

    При попадании в желудок - тошнота, рвота с кровью, боль в животе, понос, нарушение координации движений, смерть от почечной недостаточности.

    При вдыхании аэрозоля - приступы кашля, боли в животе, носовое кровотечение. Повышение температуры.

    9.4 Хроническое отравление

    Расстройства нервной системы, печени почек, разрушение носовой перегородки.

    9.5 Нормативы

    CuSO4 ПДКр.з. 0,5 мг/м 3

    ПДКм.р. 0,003 мг/м 3

    ПДКс.с. 0,001 мг/м 3

    2-й класс опасности.

    Подобные документы

      Общие сведения о летучих ядах, их характеристика, методы определения и механизмы действия. Помощь при отравлении оксидом углерода (угарным газом). Симптомы отравления, диагностика. Осложнения интоксикации СО. Лечение больных с миоренальным синдромом.

      курсовая работа , добавлен 27.01.2010

      Общие принципы оказания медицинской помощи при поражениях синильной кислотой в очаге и на этапах медицинской эвакуации. Физико-химические свойства цианидов, механизмы их токсического действия. Токсикологическая характеристика мышьяковистого водорода.

      лекция , добавлен 08.10.2013

      Физико-химические свойства ртути, пути ее поступления в организм. Характеристика симптомов и клинической картины острого отравления ртутью и марганцем. Диагностика отравления, лечение хронических интоксикаций. Проведение профилактических мероприятий.

      презентация , добавлен 21.02.2016

      Главные источники поступления тяжелых металлов, их высокая биологическая активность, опасность для организма. Токсичность тяжелых металлов, способность вызывать нарушения физиологических функций организма. Применение препаратов из цинка и меди в медицине.

      презентация , добавлен 10.11.2014

      Характеристика летучих ядов, методы их определения. Колориметрический и фотоколориметрический методы, газожидкостная хроматография. Использование газоанализатора и индикаторной трубки. Помощь при отравлении оксидом углерода. Анализ окиси углерода.

      курсовая работа , добавлен 08.04.2010

      Общие сведения о грибах. Отравления и причины, повлекшие их. Первая помощь при отравлении, синдромы при отравлении и лечение. Вопросы, которые должны обязательно задаваться при отравлении грибами. Диагностические элементы. Синдромы.

      реферат , добавлен 08.07.2005

      Понятие антисептики как комплекса мероприятий, направленных на борьбу с инфекцией, попавшей в рану. Средства прямого действия биологической антисептики, антибактериальные препараты. Источники и пути инфицирования операционной раны. Методы стерилизации.

      статья , добавлен 24.09.2014

      Промышленные яды: определение, классификация, пути поступления, факторы, определяющие токсичность. Определение, причины проявления, профилактика авитаминозов. Общие закономерности действия пыли на организм. Профилактика внутрибольничных инфекций.

      контрольная работа , добавлен 13.09.2009

      Физико-химические свойства ртути, пути ее поступления и выделения. Опасность ртутных отравлений, изменения со стороны центральной нервной системы. Лечение отравления неорганическими соединениями марганца, проведение профилактических мероприятий.

      презентация , добавлен 13.04.2014

      Понятие и классификация отхаркивающих средств. Рассмотрение механизма действия, показаний и противопоказаний к отхаркивающим средствам рефлекторного, прямого (резорбтивного) и смешанного действия. Нежелательные побочные реакции на данные препараты.

    Классификация отравлений по типам токсических агентов

    В зависимости от того, какой токсический агент стал причиной отравления, выделяют:

    Ø отравление угарным и светильным газом;

    Ø пищевые отравления;

    Ø отравление ядохимикатами;

    Ø отравление кислотами и щелочами;

    Ø отравления лекарственными препаратами и алкоголем.

    Основными группами веществ, вызывающих острые отравления, являются

    Ø медикаменты;

    Ø алкоголь и суррогаты;

    Ø прижигающие жидкости;

    Ø окись углерода.

    При характеристике отравлений используют существующие классификации ядов по принципу их действия (раздражающие, прижигающие, гемолитические и др).

    В зависимости от пути поступления ядов в организм различают ингаляционные (через дыхательные пути), пероральные (через рот), перкутанные (через кожу), инъекционные (при парентеральном введении) и другие отравления.

    Клиническая классификация строится на оценке тяжести состояния больного (легкое, средней тяжести, тяжелое, крайне тяжелое отравление), что с учетом условий возникновения (бытовое, производственное) и причины данного отравления. (случайное, суицидальное и др.) имеет большое значение в судебно-медицинском отношении.

    Классификация отравлений по характеру воздействия токсичного вещества на организм

    По характеру воздействия токсичного вещества на организм выделяют такие виды интоксикации:

    Ø Интоксикация острая -атологическое состояние организма, являющееся результатом однократного или кратковременного воздействия; сопровождается выраженными клиническими признаками

    Ø Интоксикация подострая - патологическое состояние организма, являющееся результатом нескольких повторных воздействий; клинические признаки менее выражены по сравнению с интоксикацией острой

    Ø Интоксикация сверхострая - острая интоксикация, характеризующаяся поражением центральной нервной системы, признаками которого являются конвульсии, нарушение координации; летальный исход наступает в течение нескольких часов

    Ø Интоксикация хроническая - патологическое состояние организма, являющееся результатом длительного (хронического) воздействия; не всегда сопровождается выраженными клиническими признаками.

    Детоксикация - разрушение и обезвреживание различных токсических веществ химическими, физическими или биологическими методами.

    Детоксикация- естественное и искусственное удаление токсинов из организма.

    Естественные методы детоксикации подразделяются

    Ø Естественные: цитохромоксидазная система печени - окисление, иммунная система - фагоцитоз, связывание с белками крови, экскреторная - выведение с помощью печени, почек, кишечника, кожи и легких.


    Ø Стимулированные: применение медикаментозных и физиотерапевтических методов стимулирующих естественные методы детоксикации.

    Искусственные методы детоксикации подразделяются

    Ø Физические- механическое удаление из организма токсических веществ посредством очистки кожи, слизистых оболочек и крови современными методиками:

    Ø сорбционными - гемосорбция, энтеросорбция, лимфосорбция, плазмосорбция,

    Ø фильтрационными методиками - гемодиализ, ультрафильтрация, гемофильтрация, гемодиафильтрация,

    Ø аферезные методы - плазмаферез, цитаферез, селективная элиминация (криоседиментация, гепаринкриоседиментация).

    Ø Химические - связывание, дезактивация, нейтрализация и окисление (антидоты, сорбенты, антиоксиданты, непрямое электрохимическое окисление, квантовая гемотерапия).

    Ø Биологические - введение вакцин и сыворотки крови.

    Применение антидота позволяет воспрепятствовать воздействию яда на организм, нормализовать основные функции организма или затормозить развивающиеся при отравлении функциональные или структурные нарушения.

    Антидоты бывают прямого и непрямого действия.

    Антидот прямого действия.

    Прямого действия – осуществляется непосредственное химическое или физико – химическое взаимодействие яда и противоядия.

    Основные варианты – сорбентные препараты и химические реагенты.

    Сорбентные препараты – защитное действие осуществляется за счет неспецифической фиксации (сорбции) молекул на сорбенте. Результат – снижение концентрации яда, взаимодействующего с биоструктурами, что приводит к ослаблению токсичного эффекта.

    Сорбция происходит за счет неспецифических межмолекулярных взаимодействий – водородных и Ван – дер – Ваальсовых связей (не ковалентных!).

    Сорбцию возможно осуществлять с кожных покровов, слизистых оболочек, из пищеварительного тракта (энтеросорбция), из крови (гемосорбция, плазмосорбция). Если яд уже проник в ткани, то применение сорбентов не эффективно.

    Примеры сорбентов: активированный уголь, каолин (белая глина), окись Zn, ионообменные смолы.

    1 грамм активного угля связывает несколько сотен мг стрихнина.

    Химические противоядия – в результате реакции между ядом и противоядием образуется нетоскичное или малотоксичное соединение (за счет прочных ковалентных ионных или донорно-акцепторных связей). Могут действовать в любом месте - до проникновения яда в кровь, при циркуляции яда в крови и после фиксации в тканях.

    Примеры химических противоядий:

    Ø для нейтрализации попавших в организм кислот используют соли и оксиды, дающие в водных растворах щелочную реакцию - K2CO3, NaHCO3, MgO.

    Ø при отравлении растворимыми солями серебра (например AgNO3) используют NaCl, который образует с солями серебра нерастворимый AgCl.

    Ø при отравлении ядами, содержащими мышьяк используют MgO, сульфат железа, которые химически связывают его

    Ø при отравлении марганцовокислым калием KMnO4 , который является сильным окислителем, используют восстановитель - перекись водорода H2O2

    Ø при отравлении щелочами используют слабые органические кислоты (лимонная, уксусная)

    Ø отравления солями плавиковой кислоты (фторидами) применяют сульфат кальция CaSO4, при реакции получается мало растворимый CaF2

    Ø при отравлении цианидами (солями синильной кислоты HCN) применяются глюкоза и тиосульфат натрия, которые связывают HCN. Ниже приведена реакция с глюкозой.

    очень опасна интоксикация тиоловыми ядами (соединениями ртути, мышьяка, кадмия, сурьмы и и др. тяжелых металлов). Тиоловыми такие яды называют по механизму их действия - связыванию с тиоловыми (-SH) группами белков:

    Образовавшийся комплекс яд-антидот выводится из организма, не причиняя ему вреда.

    Еще один класс антидотов прямого действия - антидоты – комплексоны (комплексообразователи). Они образуют прочные комплексные соединения с токсичными катионами Hg, Co, Cd, Pb . Такие комплексные соединения выводятся из организма, не причиняя ему вреда. Среди комплексонов наиболее распространены соли этилендиаминтетрауксусной кислоты (ЭДТА), прежде всего этилендиаминтетраацетат натрия.

    Антидот непрямого действия.

    Антидоты непрямого действия - это вещества, которые сами не реагируют с ядами, но устраняют или предупреждают нарушения в организме, возникающие при интоксикациях (отравлениях).

    1) Защита рецепторов от токсичного воздействия.

    Отравление мускарином (ядом мухомора) и фосфорорганическими соединениями происходит по механизму блокирования фермента холинэстеразы. Этот фермент отвечает за разрушение ацетилхолина, вещества, принимающего участие в передаче нервного импульса от нерва к мышечным волокнам. Если фермент блокирован, то создается избыток ацетилхолина.

    Ацетилхолин соединяется с рецепторами, что подает сигнал к сокращению мышц. При избытке ацетилхолина происходит беспорядочное сокращение мышц – судороги, которые часто приводят к смерти.

    Противоядием является атропин. Атропин применяется в медицине для расслабления мышц. Антропин связывается с рецептором, т.е. защищает его от действия ацетилхолина. В присутствии ацетилхолина мышцы не сокращюется, судорог не происходит.

    2) Восстановление или замещение поврежденной ядом биоструктуры.

    При отравлениях фторидами и HF, при отравлениях щавелевой кислотой H2C2O4 происходит связывание ионов Са2+ в организме. Противоядие – CaCl2.

    3) Антиоксиданты.

    Отравление четыреххлористым углеродом CCl4 приводит к образованию в организме свободных радикалов. Избыток свободных радикалов очень опасен, он вызывает повреждение липидов и нарушение структуры клеточных мембран. Антидоты – вещества, связывающие свободные радикалы (антиоксиданты), например витамин Е.

    4) Конкуренция с ядом за связывание с ферментом.

    Отравление метанолом:

    При отравлении метанолом в организме образуются очень токсичные соединения - формальдегид и муравьиная кислота. Они более токсичны, чем сам метанол. Это пример летального синтеза.

    Летальный синтез – превращение в организме в процессе метаболизма менее токсичных соединений в более токсичные.

    Этиловый спирт C2H5OH лучше связывается с ферментом алкогольдегидрогеназой. Это тормозит превращение метанола в формальдегид и муравьиную кислоту. CH3OH выводится в неизменном виде. Поэтому прием этилового спирта сразу вслед за отравлением метанолом значительно снижает тяжесть отравления.

    Антидоты или противоядия это такие лечеб­ные препараты, которые при введении в организм в условиях инток­сикации способны обезвредить (инактивировать) яд, циркулирую­щий в кровяном русле или даже уже связавшийся с каким-либо био­логическим субстратом, либо устранить токсический эффект яда, а также ускорить его выведение из организма. К антидотам также относят такие средства, которые способны препятствовать проникно­вению яда в организм.

    По механизму лечебного действия существующие антидоты мож­но разделить на следующие основные группы.

    1. Физико-химические - действие основано на физико-химиче­ских процессах (адсорбция, растворение) в пищевом канале. К ним относятся адсорбенты, которые бывают если не универсальными, то поливалентными. Наиболее распространенным противоядием этого типа является активированный уголь, который, обладая большой поверхностью, способен адсорбировать яд, попавший в желудок. Однако активность его ограничивается тем, что он способен взять яд «в плен» только до его резорбции. Следовательно, такие антидо­ты можно применять только перорально.

    2. Химические - действие основано на специфическом химиче­ском взаимодействии с ядом, в результате чего последний инакти-вируется. При этом антидот путем связывания, осаждения, вытес­нения и конкурентных или других реакций превращает яд в без­вредное вещество, выделяемое с мочой или калом из организма.

    3. Физиологические, или функциональные - действие направ­лено на устранение токсического эффекта яда. В отличие от преды­дущих такие антидоты не реагируют непосредственно с ядом и не изменяют его физико-химического состояния, а вступают во взаимо­действие с биологическим субстратом, на который яд отрицательно влияет. Действие физиологических антидотов основано на принципе функционального антагонизма.

    Деление антидотов на указанные группы условно, так как мно­гие из них могут быть препаратами смешанного типа, действие кото­рых более сложно, чем каждой приведенной группы отдельно. Анти­дот может представлять собой также смесь нескольких лечебных средств, вводимых в определенной последовательности или же одно­временно. При этом, оказывая лечебное действие в различных на­правлениях, отдельные ингредиенты дополняют друг друга или же усиливают эффект путем суммирования либо потенцирования анти-дотного действия. Наиболее эффективными антидотами являются те, которые способны дезактивировать яд в точках его приложения.

    Важным обстоятельством, обеспечивающим высокую активность антидота, являются сроки его введения после отравления. Чем рань­ше применено противоядие, тем эффективнее проявляется его поло­жительное действие.

    В настоящее время медицинская практика для борьбы с раз­личными отравлениями располагает пока небольшим числом лечеб­ных средств антидотного действия. Для лечения отравления различ­ными соединениями мышьяка - органическими и неорганическими, 3-, 5-валентными (мышьяковистый ангидрид, арсениты и арсенаты натрия и кальция, парижская зелень, осарсол, новарсенол), а также тяжелыми металлами, в том числе и радиоактивными (ртуть, медь, полоний, кадмий и др.), широко зарекомендовали себя меркапто-соединения, например, отечественный препарат унитиол (А. И. Черкес, В. Е. Петрунькин и соавт., 1950).

    По строению он представляет собой дитиол, то есть соединение, содержащее две сульфгидрильные группы, и относится к антидотам химического типа действия.

    Унитиол обладает большой широтой терапевтического действия; его можно вводить парентерально, через рот. Препарат стоек при хранении как в кристаллическом состоянии, так и в виде растворов. Создание данного антидота оказалось возможным благодаря раскрытию механизма токсического действия мышьяксодержащих соединений. Токсическое действие последних обусловлено блокирую­щим влиянием на меркаптогруппы тиобелков ферментных систем, играющих жизненно важную роль. При этом сульфгидрильные груп­пы ферментов, легко взаимодействуя с тиоловыми ядами, образуют прочный токсичный комплекс (белок - яд), в результате чего тио-белки теряют свою реактивную способность.

    Унитиол , попадая в организм, отравленный мышьяк- и металлсо­держащими веществами, благодаря высокой реакционной способно­сти сульфгидрильных групп, легко вступает в реакцию с мышьяком или металлом, предотвращая этим связывание ядов с меркаптогруппами ферментных белков. При этом дитиолы с мышьяком или метал­лом образуют малотоксичные, водорастворимые комплексные соеди­нения - циклические тиоарсениты или меркаптиды металлов, которые затем выводятся с мочой из организма. Тиоарсениты по прочности превосходят те, которые образуются при взаимодействии ядов. с 5Н-группами ферментов, а по токсичности уступают последним. Поэтому при лечении унитиолом в моче пострадавших обнаружи­вается больше мышьяка или металла, чем у нелеченных. Указанные антидоты используются в качестве активных средств элиминации ядов, что является важным как при остром, так и хроническом отравлении.

    Необходимо отметить, что унитиол реагирует не только со сво­бодными мышьяк- и металлсодержащими соединениями, но и с ядом, который уже успел вступить в реакцию с тиоферментами. Поэтому антидот способен не только защитить ферменты от блоки­рующего влияния ядов, но и реактивировать меркаптогруппы фер­ментных систем, уже угнетенных ядом. Тиоловые препараты обла­дают как профилактическим, так и выраженным терапевтическим эффектом.

    Препарат обладает однотипным действием с унитиолом и реко­мендуется при отравлении тиоловыми ядами, в частности, свинцом и ртутью. Сукцимер более равномерно выводит их из организма и меньше чем унитиол влияет на выведение микроэлементов из орга­низма (О. Г. Архипова и соавт., 1975).

    Оксатиол (Л. А. Ильин, 1976), являющийся аналогом унитиола, оказался более эффективным элиминатором радиоактивного полония. Оксатиол уменьшает степень внутреннего облучения организма этим излучателем.

    Из монотиояов известен пеницилламин , который обладает комплексообразующими свойствами и поэтому рекомендуется при отрав­лении ртутью, свинцом (при сатурнизме) и их солями (С. И. Ашбель с соавт., 1974).

    Комплексообразующие свойства пеницилламина зависят не толь­ко от наличия активной сульфгидрильной группы, но и связаны со стереохимическим строением его молекулы, а также наличием атома азота и карбоксильной группы, обеспечивающих возможность обра­зования координационных связей. Благодаря этому пеницилламин образует стабильные комплексы со свинцом, чего нельзя сказать об унитиоле.

    Последний, будучи мощным антидотом целого ряда тиоловых ядов, оказался неэффективным по отношению к мышьяковистому водороду. Это обусловлено тем, что механизм токсического действия этого арсина отличается бт других мышьяксодержащих веществ.

    Совместные усилия химиков и токсикологов завершились созда­нием антидота мекаптида , который оказался эффективным при отравлении мышьяковистым водородом.

    Липоидотропные свойства, а также высокая капиллярная актив­ность способствуют проникновению антидота в эритроциты. Обладая легкой окисляемостью препарат образует соединения, содержащие дисульфидные группы, которые окисляют мышьяковистый водород и его метаболиты - гидраты мышьяка. Восстановленный затем дитиол и продукты окисления мышьяковистого водорода образуют ма­лотоксичные циклические тиоарсениты, которые выводятся из орга­низма с мочой.

    Унитиол, являясь водорастворимым дитиолом и обладая восста­новительными свойствами, не может окислять мышьяковистый водород. Поэтому, примененный в ранние сроки интоксикации по­следним, он даже ухудшает течение и исход отравления. В более поздние сроки (через 5-7 дней после отравления), когда процесс окисления арсина в основном закончился и образовались мышьяксодержащие вещества, унитиол можно рекомендовать в качестве элиминатора, ускоряющего выведение мышьяка из организма.

    При отравлении многими металлами наряду с тиоловыми пре­паратами (унитиолом, сукцимером) эффективными антидотолечебными свойствами обладают комплексоны (хелатообразователи ) - группа соединений, способных образовывать стойкие, малодиссоции­рующие комплексы со многими тяжелыми металлами, которые отно­сительно быстро выводятся из организма. Из них наиболее распро­странены тетацин-кальций (кальций-динатриевая соль этилендиамин-тетрауксусной кислоты, ЭДТА), пентацин и др.

    Тетацин-кальций вводят внутривенно капельно по 20 мл 10% раствора (в изотоническом растворе натрия хлорида или в 5% ра­створе глюкозы), а также внутрь в таблетках по 0,5 г. Разовая доза 2 г, суточная - 4г.

    Комплексоны чаще используются в медицинской практике в качестве элиминаторов из организма многих токсических металлов, щелочно- и редкоземельных элементов, а также радиоактивных изо­топов.

    При отравлении препаратами железа (сульфат, глюконат и лактат железа) наиболее эффективен дефероксамин (десферол) - производное гидроксамовой кислоты. Этот комплексообразователь спо­собен выводить железо с мочой из организма, не влияя при этом на содержание других металлов и микроэлементов. Следовательно, тиоловые антидоты являются не единственными активными детоксицирующими средствами по отношению к мышьяксодержащим соедине­ниям и некоторым тяжелым металлам.

    Принимая во внимание, что обезвреживание многих производ­ных галоидуглеводородов в организме происходит главным образом путем их конъюгации с меркаптогруппами биосубстратов (глутатион, цистеин), в качестве возможных противоядий были изучены та­кие монотиолы, как цистеин и ацетилцистеин.

    Цистеин является эффективным специфическим средством лече­ния при интоксикации моногалоидуглеводородами алифатического ряда; бромистым метилом, металлилхлоридом, хлористым этилом, йодистым метилом, эпихлоргидрином и другими препаратами (И. Г. Мизюкова, Г. Н. Бахишев, 1975).

    Важно отметить, что цистеин оказывает положительное дей­ствие при приеме внутрь. Это дает возможность использовать его в качестве профилактического средства, что имеет важное практиче­ское значение при проведении фумигационных работ с такими токсическими веществами, как бромистый метил, метилаллилхлорид и др.

    Механизм лечебного действия цистеина при отравлении монога-лоидалкилами рассматривается в основном как результат конку­рентного действия сульфгидрильных групп препарата и белков, а также аминокислот организма по отношению к галоидалкилу как высокореакционному алкилирующему агенту. В результате этого образуются малотоксические соединения в виде предшественников меркаптуровых кислот (5-метилцистеин и 5-метилглутатион), кото­рые с мочой выводятся из организма.

    Цистеин обладает антидотным действием при отравлении мно­гими моногалоидуглеводородами алифатического ряда. С увеличени­ем количества атомов галоида в молекуле вещества (например, ди­хлорэтан, дибромэтан, четыреххлористый углерод) действие цистеи­на уменьшается или исчезает.

    Ацетилцистеин - высокоэффективное лечебное средство не толь­ко при отравлениях моногалоидпроизводными углеводородов али­фатического ряда, но и дигалоидпроизводными. Так, впервые пока­зана детоксицирующая способность ацетилцистеина при отравлениях дихлор- и дибромэтаном (И. Г. Мизюкова, М. Г. Кокаровцева, 1978). При этом обезвреживанию подвергаются в основном токсич­ные метаболиты дихлорэтана (хлорэтанол, монохлоруксусный аль­дегид, монохлоруксусная кислота), которые образуются в орга­низме.

    Лечебное действие ацетилцистеина осуществляется двумя путя­ми: химической конъюгацией токсического вещества или его метабо­литов с цистеином (образующимся в организме из ацетилцистеина), а также увеличением объема ферментативной конъюгации с восста­новленным глутатионом печени.

    Ацетилцистеин устойчивее цистеина, находящегося как в кри­сталлическом состоянии, так и в виде растворов.

    Примером комплексной антидотной терапии могут служить спе­цифические средства, применяемые при отравлении синильной кисло­той и цианистыми соединениями.

    Антидотная терапия отравлений цианистыми соединениями за­ключается в последовательном применении метгемоглобинобразователей и серусодержащих соединений, а также углеводов.

    Метгемоглобинобразующие препараты (амилнитрит, пропилнит-рит, нитрит натрия и др.) превращают гемоглобины в метгемогло-бин путем окисления двухвалентного железа в трехвалентное. Циан-ион, в свою очередь, быстро и прочно реагирует с трехвалент­ным железом метгемоглобина и образует цианметгемоглобин, пре­пятствуя взаимодействию яда с цнтохромоксидазой, то есть предот­вращает блокаду фермента.

    Образующийся цианметгемоглобин - соединение непрочное, и отщепление циан-группы может вновь оказывать токсическое влия­ние. Но этот процесс протекает уже медленно. Поэтому наряду с метгемоглобинобразователями нужно применять такие средства, ко­торые способны реагировать с цианионом. К ним относятся серусодержащие вещества (тиосульфат натрия) и углеводы (хромосмон или глюкоза).

    В качестве противоядий используют антиоксиданты, особенно в тех случаях, когда при воздействии того или иного химического агента в условиях организма в результате окисления яда образуют­ся более токсичные продукты, чем исходное вещество. Стабилизи­рующее действие антиоксидантов заключается в том, что они всту­пают в конкурентные отношения с окислителем либо вместе с по­следним за ферменты, участвующие в процессах окисления.

    В первом варианте антиоксидант препятствует окислению яда и тем самым понижает количество циркулирующих в организме токси­ческих продуктов его превращения.

    Например, этиловый спирт препятствует окислению метанола и, следовательно, тормозит образование формальдегида и муравьиной кислоты, которые обусловливают токсическое действие метилового спирта.

    Во втором варианте антиоксиданты, разрывая окислительную цепь, могут подавлять образование свободных радикалов или на­правлять превращение перекисей в сторону образования стабильных продуктов.

    В качестве антиоксидантов могут быть использованы некоторые витамины и аминокислоты. Так, в эксперименте на животных полу­чены положительные результаты при применении токоферола ацета­та в условиях интоксикации такими хлорорганическимн пестицида­ми, как гептахлор и гамма-изомер гексахлорана, а также цистина, цистамина и метионина при отравлении бензолом.

    Наряду с противоядиями, направленными на нейтрализацию или связывание яда, широкое использование в медицинской практи­ке находят лечебные препараты, назначение которых состоит в пред­упреждении или устранении вредных проявлений действия ядов,- это физиологические или функциональные антидоты.

    Впервые в качестве физиологического антидота был применен атропина сульфат при отравлении мухоморами . Было установлено, что препарат устраняет эффекты различных холиномиметических (ацетилхолин, карбахолин, пилокарпина гидрохлорид, ареколин, мускарин и др.) и антихолинэстеразных веществ (физостигмина салицилат, прозерин, галантамина гидробромид, фосфорорганические соединения). Таким же действием, но в меньшей степени, чем атро­пина сульфат, обладают и другие холинолитические препараты (скополамина гидробромид, платифиллина гидротартрат, апрофен, дипрофен, тропацин и др.).

    Исследование механизма антагонизма между холиномиметическими и холинолитическими веществами показало, что последние обладают большей тропностью к холинорецепторам по сравнению с холиномиметическимн веществами. Так, атропина сульфат может снять эффект даже нескольких смертельных доз холиномиметиче­ских и антихолинэстеразных веществ, в то время как последние не устраняют всех симптомов отравления атропина сульфатом.

    Известно, что органические соединения фосфора, которые ис­пользуются во многих отраслях народного хозяйства, в том числе и сельского, в качестве пестицидов (тиофос, метафос, хлорофос, метилмеркаптофос, карбофос, метилнитрофос и др.), являются сильны­ми ингибиторами холинэстеразы.

    Благодаря фосфорилированию наступает инактивация холин­эстеразы и потеря способности гидролизовать ацетилхолин. В ре­зультате этого происходит избыточное накопление ацетилхолина в местах его образования, что и обусловливает токсическое действие фосфорорганических соединений (ФОС), которое проявляется в воз­буждении нервной системы, спастическом состоянии гладкой муску­латуры, судорогами поперечнополосатой мускулатуры.

    В механизме токсического действия ФОС угнетение холинэстера­зы играет важную, а иногда и определяющую роль, но этот процесс не _ является единственным. Наряду с ним происходит прямое воз­действие яда на ряд важнейших систем и органов.

    Использование холинолитических средств явилось основой для антидотной терапии отравлений фосфорорганическими веществами. Из них наиболее широкое применение получил атропина сульфат, который блокирует М-холинореактивные системы организма, и они становятся нечувствительными к ацетилхолину. Являясь антагони­стом ацетилхолина, препарат вступает в конкурентные отношения с ним за обладание одним и тем же рецептором и снимает мускари-ноподобный эффект ФОС (в частности бронхоспазм, уменьшает се­крецию желез и слюноотделение).

    Атропина сульфат более эффективен при введении с целью про­филактики. Для лечения его нужно применять в больших дозах а повторно, потому что действие препарата исчезает быстрее, чем эф­фект ФОС. В условиях интоксикации ФОС толерантность катропина сульфату резко возрастает, поэтому его можно вводить в больших количествах (20 мг и более в сутки).

    Отравление ФОС сопровождается также рядом никотиноподобных явлений. В связи с тем что атропина сульфат обладает более выраженными свойствами устранять мускариноподобный эффект, в дальнейшем были предложены другие холинолитические препараты (тропацин, апрофен, спазмолитик), способные уменьшать никотино-подобыые эффекты. Для усиления антидотного действия атропина сульфата как периферического холинолитика рекомендуется исполь­зовать центральные холинолитики (амизил и др.). Такое сочетание холинолитиков нашло практическое применение при лечении отрав­лений фосфорорганическими инсектицидами.

    При взаимодействии ФОС с холинэстеразами фосфорилируется сериновый гидроксил эстеразного центра фермента по тому же меха­низму, по которому происходит его ацетилирование при взаимодей­ствии с ацетилхолином. Отличие состоит в том, что дефосфорилирование проходит значительно медленнее, чем деацетилирование. Это навело на мысль о возможности ускорения дефосфорилирования ингибированной холинэстеразы с помощью нуклеофильных агентов.

    Процесс реактивации холинэстеразы, ингибированный фосфор-органическими соединениями, наступает под влиянием производных гидроксамовых кислот. Эти данные дали возможность в качестве специфических средств лечения отравлений ФОС применять реактиваторы, способные восстанавливать активность холинэстеразы, угне­тенной ядом.

    Реактиваторы вытесняют ФОС из соединений с холинэстеразой и тем самым восстанавливают ее активность. В результате такого влияния активируется холинэстераза, возобновляется ферментатив­ный гидролиз ацетилхолина и, следовательно, нормализуется процесс химической передачи нервных импульсов.

    В настоящее время получены более активные реактиваторы, чем гидроксамовые кислоты,- ТМБ-4, получивший в Советском Союзе название дипироксим (изонитрозин), а также соли 2-ПАМ (прали-доксим), МИНА (моноизонитрозоацетон) и токсогонин (обидоксим). Препараты способны не только реактивировать угнетенную холин-эстеразу, но и непосредственно реагировать с ФОС, образуя при этом нетоксичные продукты гидролиза. К сожалению, широкому приме­нению реактиваторов холинэстеразы в медицинской практике в зна­чительной мере препятствует высокая их токсичность.

    Дальнейшие исследования позволили получить менее токсичные и более эффективные реактиваторы - диэтиксим, который по своей структуре близок к ацетилцистеину (В. Е. Кривенчук, В. Е. Петрунь-кин, 1973; Ю. С. Каган и соавт., 1975; Н. В. Кокшарева, ^1975), а также диалкоб - комплексное соединение кобальта (В. Н. Евреев и соавт., 1968).

    Следовательно, антидотная терапия отравлений ФОС осущест­вляется в двух направлениях - использование холинолитиков и при­менение реактиваторов холинэстеразы. Наиболее эффективно холиколитики сочетать с реактиваторами.

    Другим примером физиологического антагонизма , используемого с терапевтической целью, могут служить также конкурентные вза­имоотношения между окисью углерода и кислородом. Окись углеро­да обладает значительно большим сродством к гемоглобину по сравне­нию с кислородом. Поэтому при наличии в воздухе более низких концентраций окиси углерода по сравнению с кислородом в крови происходит постепенное накопление карбоксигемоглобина и содер­жание оксигемоглобина уменьшается.

    Для успешного применения кислорода в условиях отравления окисью углерода необходимо, чтобы его концентрация в воздухе в тысячи раз превышала концентрацию ядовитого газа. Кислород при высоких концентрациях может вытеснять СО из образовавшегося карбоксигемоглобина НЬсо. Применение кислорода при интоксика­ции окисью углерода рассматривается как специфическая терапия.

    По принципу функционального антагонизма действуют бемегрид, налорфина гидрохлорид и протамина сульфат.

    Бемегрид является антагонистом барбитуратов, поэтому исполь­зуется при лечении острых отравлений этими веществами и снотвор­ными средствами. Налорфина гидрохлорид применяется как антидот в условиях острого отравления анальгетическими препаратами (мор­фина гидрохлоридом, промедолом, и др.).

    Протамина сульфат - антагонист гепарина, применяется как антидот при отравлениях указанным антикоагулянтом.

    Лечение различных отравлений химическими веществами не мо­жет ограничиваться применением только специфических антидотов, хотя во многих случаях они играют решающую роль.

    Только комплексная терапия с использованием методов усиле­ния естественной и искусственной детоксикации организма, суще­ствующих антидотов, а также патогенетических и симптоматических средств, направленных на защиту тех органов и функций организма, которые избирательно поражаются токсическим веществом, будет способствовать быстрейшему выздоровлению пострадавшего.

    Лечение острых отравлений, 1982 г.





    error: Контент защищен !!