Синтез гормонов щитовидной железы. Щитовидная железа Для синтеза гормонов щитовидной железы необходим

Фолликулярные клетки щитовидной железы синтезируют крупный белок-предшественник гормонов (тиреоглобулин), извлекают из крови и накапливают йодид и экспрессируют на своей поверхности рецепторы, которые связывают тиреотропный гормон (тиреотропин, ТТГ), стимулирующий рост и биосинтетические функции тиреоцитов.

Синтез и секреция тиреоидных гормонов

Синтез Т4 и Т3 в щитовидной железе проходит шесть основных этапов:

  1. активный транспорт I — через базальную мембрану в клетку (захват);
  2. окисление йодида и йодирование остатков тирозина в молекуле тиреоглобулина (органификация);
  3. соединение двух остатков йодированного тирозина с образованием йодтиронинов Т3 и Т4 (конденсация);
  4. протеолиз тиреоглобулина с выходом свободных йодтиронинов и йодтирозинов в кровь;
  5. дейодирование йодтиронинов в тиреоцитах с повторным использованием свободного йодида;
  6. внутриклеточное 5"-дейодирование Т4 с образованием Т3.

Для синтеза тиреоидных гормонов необходимо присутствие функционально активных молекул НЙС, тиреоглобулина и тиреоидной пероксидазы (ТПО).

Тиреоглобулин

Тиреоглобулин представляет собой крупный гликопротеин, состоящий из двух субъединиц, каждая из которых насчитывает 5496 аминокислотных остатков. В молекуле тиреоглобулина содержится примерно 140 остатков тирозина, но только четыре из них расположены таким образом, что могут превращаться в гормоны. Содержание йода в тиреоглобулине колеблется от 0,1 до 1% по весу. В тиреоглобулине, содержащем 0,5% йода, присутствуют три молекулы Т4 и одна молекула Т3.

Ген тиреоглобулина, расположенный на длинном плече хромосомы 8, состоит примерно из 8500 нуклеотидов и кодирует мономерный белок-предшественник, в который входит и сигнальный пептид из 19 аминокислот. Экспрессия гена тиреоглобулина регулируется ТТГ. После трансляции тиреоглобулиновой мРНК в шероховатом эндоплазматическом ретикулуме (ШЭР) образовавшийся белок поступает в аппарат Гольджи, где подвергается гликозилированию, и его димеры упаковываются в экзоцитозные пузырьки. Затем эти пузырьки сливаются с апикальной мембраной клетки, и тиреоглобулин выделяется в просвет фолликула. На границе апикальной мембраны и коллоида происходит йодирование остатков тирозина в молекуле тиреоглобулина.

Тиреоидная пероксидаза

ТПО, связанный с мембраной гликопротеин (молекулярная масса 102 кДа), содержащий группу гемма, катализирует как окисление йодида, так и ковалентное связывание йода с тирозильными остатками тиреоглобулина. ТТГ усиливает экспрессию гена ТПО. Синтезированная ТПО проходит по цистернам ШЭР, включается в экзоцитозные пузырьки (в аппарате Гольджи) и переносится к апикальной мембране клетки. Здесь, на границе с коллоидом, ТПО катализирует йодирование тирозильных остатков тиреоглобулина и их конденсацию.

Транспорт йодида

Транспорт йодида (Г) через базальную мембрану тиреоцитов осуществляется НЙС. Связанный с мембраной НЙС, снабжаемый энергией ионных градиентов (создаваемых Na+, К+ — АТФазой), обеспечивает концентрацию свободного йодида в щитовидной железе человека, в 30-40 раз превышающую его концентрацию в плазме. В физиологических условиях НЙС активируется ТТГ, а в патологических (при болезни Грейвса) - антителами, стимулирующими рецептор ТТГ. НЙС синтезируется также в слюнных, желудочных и молочных железах. Поэтому они также обладают способностью концентрировать йодид. Однако его накоплению в этих железах препятствует отсутствие органификации; ТТГ не стимулирует активность НЙС в них. Большие количества йодида подавляют как активность НЙС, так и экспрессию его гена (механизм ауторегуляции метаболизма йода). Перхлорат также снижает активность НЙС, и поэтому может применяться при гипертиреозе. НЙС транспортирует в тиреоциты не только йодид, но и пертехнетат (TcO4-). Радиоактивный изотоп технеция в виде Tc99mO4- используют для сканирования щитовидной железы и оценки ее поглощающей активности.

На апикальной мембране тиреоцитов локализуется второй белковый транспортер йодида - пендрин, который переносит йодид в коллоид, где происходит синтез тиреоидных гормонов. Мутации гена пендрина, нарушающие функцию этого белка, обусловливают синдром зоба с врожденной глухотой (синдром Пендреда).

Йодирование тиреоглобулина

На границе тиреоцитов с коллоидом йодид быстро окисляется перекисью водорода; эта реакция катализируется ТПО. В результате образуется активная форма йодида, которая присоединяется к тирозильным остаткам тиреоглобулина. Необходимая для этой реакции перекись водорода образуется, по всей вероятности, под действием НАДФ-оксидазы в присутствии ионов кальция. Этот процесс также стимулируется ТТГ. ТПО способна катализировать йодирование тирозильных остатков и в других белках (например, в альбумине и фрагментах тиреоглобулина), но активные гормоны в этих белках не образуются.

Конденсация йодтирозильных остатков тиреоглобулина

ТПО катализирует и объединение йодтирозильных остатков тиреоглобулина. Предполагается, что в ходе этого внутримолекулярного процесса происходит окисление двух йодированных остатков тирозина, близость которых друг к другу обеспечивается третичной и четвертичной структурой тиреоглобулина. Затем йодтирозины образуют промежуточный хиноловый эфир, расщепление которого приводит к появлению йодтиронинов. При конденсации двух остатков дийодтирозина (ДИТ) в молекуле тиреоглобулина образуется Т4, а при конденсации ДИТ с остатком монойодтирозина (МИТ) — Т3.

Производные тиомочевины - пропилтиоурацил (ПТУ), тиамазол и карбимазол - являются конкурентными ингибиторами ТПО. Из-за своей способности блокировать синтез тиреоидных гормонов эти средства используются при лечении гипертиреоза.

Протеолиз тиреоглобулина и секреция тиреоидных гормонов

Пузырьки, образующиеся на апикальной мембране тиреоцитов, поглощают тиреоглобулин и путем пиноцитоза проникают в клетки. С ними сливаются лизосомы, содержащие протео-литические ферменты. Протеолиз тиреоглобулина приводит к освобождению Т4 и Т3, равно как и неактивных йодированных тирозинов, пептидов и отдельных аминокислот. Биологические активные Т4 и Т3 выделяются в кровь; ДИТ и МИТ дейо-дируются, и их йодид сохраняется в железе. ТТГ стимулирует, а избыток йодида и литий ингибируют секрецию тиреоидных гормонов. В норме из тиреоцитов в кровь выделяется и небольшое количество тиреоглобулина. При ряде заболеваний щитовидной железы (тиреоидите, узловом зобе и болезни Грейвса) его концентрация в сыворотке значительно возрастает.

Дейодирование в тиреоцитах

МИТ и ДИТ, образующиеся в процессе синтеза тиреоидных гормонов и протеолиза тиреоглобулина, подвергаются действию внутритиреоидной дейодиназы (НАДФ-зависимого флавопротеина). Этот фермент присутствует в митохондриях и микросомах и катализирует дейодирование только МИТ и ДИТ, но не Т4 или Т3. Основная часть освобождающегося йодида повторно используется в синтезе тиреоидных гормонов, но небольшие его количества все же просачиваются из тиреоцитов в кровь.

В щитовидной железе присутствует также 5"-дейодиназа, которая превращает Т4 в Т3. При недостаточности йодида и гипертиреозе этот фермент активируется, что приводит к увеличению количества секретируемого Т3 и тем самым к усилению метаболических эффектов тиреоидных гормонов.

Нарушения синтеза и секреции тиреоидных гормонов

Дефицит йода в диете и наследственные дефекты

Причиной недостаточной продукции тиреоидных гормонов может быть как дефицит йода в диете, так и дефекты генов, кодирующих белки, которые участвуют в биосинтезе Т4 и Т3 (дисгормоногенез). При малом содержании йода и общем снижении продукции тиреоидных гормонов увеличивается отношение МИТ/ДИТ в тиреоглобулине и возрастает доля секретируемого железой Т3. Гипоталамо-гипофизарная система реагирует на дефицит тиреоидных гормонов повышенной секрецией ТТГ. Это приводит к увеличению размеров щитовидной железы (зобу), что может компенсировать дефицит гормонов. Однако если такая компенсация недостаточна, то развивается гипотиреоз. У новорожденных и маленьких детей дефицит тиреоидных гормонов может приводить к необратимым нарушениям нервной и других систем (кретинизм). Конкретные наследственные дефекты синтеза Т4 и Т3 подробнее рассматриваются в разделе, посвященном нетоксическому зобу.

Влияние избытка йода на биосинтез тиреоидных гормонов

Хотя йодид необходим для образования тиреоидных гормонов, его избыток угнетает три основных этапа их продукции: захват йодида, йодирование тиреоглобулина (эффект Вольфа-Чайкова) и секрецию. Однако нормальная щитовидная железа через 10-14 суток «ускользает» из-под ингибиторных влияний избытка йодида. Ауторегуляторные эффекты йодида предохраняют функцию щитовидной железы от последствий кратковременных колебаний потребления йода.

Влияние избытка йодида имеет важное клиническое значение, так как может лежать в основе индуцированных йодом нарушений функции щитовидной железы, а также позволяет использовать йодид для лечения ряда нарушений ее функции. При аутоиммунном тиреоидите или некоторых формах наследственного дисгормоногенеза щитовидная железа теряет способность «ускользать» из-под ингибирующего действия йодида, и избыток последнего может вызывать гипотиреоз. И наоборот, у некоторых больных с многоузловым зобом, латентной болезнью Грейвса, а иногда и в отсутствие исходных нарушений функции щитовидной железы, нагрузка йодидом может вызывать гипертиреоз (феномен йод-Базедов).

Транспорт тиреоидных гормонов

Оба гормона циркулируют в крови в связанном с белками плазмы виде. Несвязанными, или свободными, остаются только,0,04% Т4 и 0,4% Т3, и именно эти их количества могут проникать в клетки-мишени. Тремя главными транспортными белками для этих гормонов являются: тироксин-связывающий глобулин (ТСГ), транстиретин (ранее называвшийся тироксин-связывающим преальбумином - ТСПА) и альбумин. Связывание с белками плазмы обеспечивает доставку плохо растворимых в воде йодтиронинов к тканям, их равномерное распределение по тканям-мишеням, а также их высокий уровень в крови со стабильным 7-суточным t1/2 в плазме.

Тироксин-связывающий глобулин

ТСГ синтезируется в печени и представляет собой гликопротеин семейства серпинов (ингибиторов сериновых протеаз). Он состоит из одной полипептидной цепи (54 кДа), к которой прикреплены четыре углеводные цепи, в норме содержащие примерно 10 остатков сиаловой кислоты. Каждая молекула ТСГ содержит один сайт связывания Т4 или Т3. Концентрация ТСГ в сыворотке составляет 15-30 мкг/мл (280-560 нмоль/л). Этот белок обладает высоким сродством к Т4 и Т3 и связывает около 70% присутствующих в крови тиреоидных гормонов.

Связывание тиреоидных гормонов с ТСГ нарушается при врожденных дефектах его синтеза, при некоторых физиологических и патологических состояниях, а также под влиянием ряда лекарственных средств. Недостаточность ТСГ встречается с частотой 1:5000, причем для некоторых этнических и расовых групп характерны специфические варианты этой патологии. Наследуясь как сцепленный с Х-хромосомой рецессивный признак, недостаточность ТСГ поэтому гораздо чаще наблюдается у лиц мужского пола. Несмотря на низкие уровни общих Т4 и Т3, содержание свободных тиреоидных гормонов остается нормальным, что и определяет эутиреоидное состояние носителей данного дефекта. Врожденная недостаточность ТСГ часто ассоциируется с врожденной недостаточностью кортикостероид-связывающего глобулина. В редких случаях врожденного избытка ТСГ общий уровень тиреоидных гормонов в крови повышен, но концентрации свободных Т4 и Т3 опять-таки остаются нормальными, а состояние носителей дефекта - эутиреоидным. Беременность, эстроген-секретирующие опухоли и эстрогенная терапия сопровождаются повышением содержания сиаловой кислоты в молекуле ТСГ, что замедляет его метаболический клиренс и обусловливает повышенный уровень в сыворотке. При большинстве системных заболеваний уровень ТСГ снижается; расщепление лейкоцитарными протеазами уменьшает и сродство этого белка к тиреоидным гормонам. И то и другое приводит к снижению общей концентрации тиреоидных гормонов при тяжелых заболеваниях. Одни вещества (андрогены, глюкокортикоиды, даназол, L-аспарагиназа) снижают концентрацию ТСГ в плазме, тогда как другие (эстрогены, 5-фторурацил) повышают ее. Некоторые из них [салицилаты, высокие дозы фенитоина, фенилбу-тазон и фуросемид (при внутривенном введении)], взаимодействуя с ТСГ, вытесняют Т4 и Т3 из связи с этим белком. В таких условиях гипоталамо-гипофизарная система сохраняет концентрацию свободных гормонов в нормальных пределах за счет снижения их общего содержания в сыворотке. Повышение уровня свободных жирных кислот под влиянием гепарина (стимулирующего липопротеинлипазу) также приводит к вытеснению тиреоидных гормонов из связи с ТСГ. In vivo это может снижать общий уровень тиреоидных гормонов в крови, но in vitro (например, при отборе крови через заполненную гепарином канюлю) содержание свободных Т4 и Т3 повышается.

Транстиретин (тироксин-связывающий преальбумин)

Транстиретин, глобулярный полипептид с молекулярной массой 55 кДа, состоит из четырех одинаковых субъединиц, каждая из которых насчитывает 127 аминокислотных остатков. Он связывает 10% присутствующего в крови Т4. Его сродство к Т4 на порядок выше, чем к Т3. Комплексы тиреоидных гормонов с транстиретином быстро диссоциируют, и поэтому транстиретин служит источником легко доступного Т4. Иногда имеет место наследственное повышение сродства этого белка к Т4. В таких случаях уровень общего Т4 повышен, но концентрация свободного Т4 остается нормальной. Эутиреоидная гипертироксинемия наблюдается также при эктопической продукции транстиретина у больных с опухолями поджелудочной железы и печени.

Альбумин

Альбумин связывает Т4 и Т3 с меньшим сродством, чем ТСГ или транстиретин, но в силу его высокой концентрации в плазме с ним связано целых 15% тиреоидных гормонов, присутствующих в крови. Быстрая диссоциация комплексов Т4 и Т3 с альбумином делает этот белок основным источником свободных гормонов для тканей. Гипоальбуминемия, характерная для нефроза или цирроза печени, сопровождается снижением уровня общих Т4 и Т3, но содержание свободных гормонов остается нормальным.

При семейной дисальбуминемической гипертироксинемии (аутосомно-доминантном дефекте) 25% альбумина обладают повышенным сродством к Т4. Это приводит к повышению уровня общего Т4 в сыворотке при сохранении нормальной концентрации свободного гормона и эутиреоза. Сродство альбумина к Т3 в большинстве таких случаев не меняется. Варианты альбумина не связывают аналоги тироксина, используемые во многих иммунологических системах определения свободного Т4 (свТ4); поэтому при обследовании носителей соответствующих дефектов можно получить ложно завышенные показатели уровня свободного гормона.

Метаболизм тиреоидных гормонов

В норме щитовидная железа секретирует в сутки примерно 100 нмоль Т4 и всего 5 нмоль Т3; суточная секреция биологически неактивного реверсивного Т3 (рТ3) составляет менее 5 нмоль. Основное количество Т3, присутствующего в плазме, образуется в результате 5"-монодейодирова-ния наружного кольца Т4 в периферических тканях, главным образом в печени, почках и скелетных мышцах. Поскольку Т3 обладает более высоким сродством к ядерным рецепторам тиреоидных гормонов, чем Т4, 5"-монодейодирова-ние последнего приводит к образованию гормона с большей метаболической активностью. С другой стороны, 5-дейодирование внутреннего кольца Т4 приводит к образованию 3,3",5"-трийодтиронина, или рТ3, лишенного метаболической активности.

Три дейодиназы, катализирующие эти реакции, различаются по своей локализации в тканях, субстратной специфичности и активности в физиологических и патологических условиях. Наибольшие количества 5"-дейодиназы 1-го типа обнаруживаются в печени и почках, а несколько меньшие - в щитовидной железе, скелетных и сердечной мышцах и других тканях. Фермент содержит селеноцистеиновую группу, которая, вероятно, и является его активным центром. Именно 5"-дейодиназа 1-го типа образует основное количество Т3 в плазме. Активность этого фермента возрастает при гипертиреозе и снижается при гипотиреозе. Производное тиомочевины ПТУ (но не тиамазол), а также антиаритмическии препарат амиодарон и йодированные рентгеноконтрастные вещества (например, натриевая соль иоподовой кислоты) ингибируют 5"-дейодиназу 1-го типа. Превращение Т4 в Т3 снижается и при недостаточности селена в диете.

Фермент 5"-дейодиназа 2-го типа экспрессируется преимущественно в головном мозге и гипофизе и обеспечивает постоянство внутриклеточного содержания Т3 в ЦНС. Фермент обладает высокой чувствительностью к уровню Т4 в плазме, и снижение этого уровня сопровождается быстрым возрастанием концентрации 5"-дейодиназы 2-го типа в головном мозге и гипофизе, что поддерживает концентрацию и действие Т3 в нейронах. И наоборот, при повышении уровня Т4 в плазме содержание 5"-дейодиназы 2-го типа снижается, и клетки мозга оказываются до некоторой степени защищенными от эффектов Т3. Таким образом, гипоталамус и гипофиз реагируют на колебания уровня Т4 в плазме изменением активности 5"-дейодиназы 2-го типа. На активность этого фермента в мозге и гипофизе влияет также рТ3. Альфа-адренергические соединения стимулируют 5"-дейодиназу 2-го типа в бурой жировой ткани, но физиологическое значение этого эффекта остается неясным. В хориальных мембранах плаценты и глиальных клетках ЦНС присутствует 5-дейодиназа 3-го типа, превращающая Т4 в рТ3, а Т3 - в 3,3"-дийодтиронин (Т2). Уровень дейодиназы 3-го типа возрастает при гипертиреозе и снижается при гипотиреозе, что предохраняет плод и головной мозг от избытка Т4.

В целом, дейодиназы выполняют троякую физиологическую функцию. Во-первых, они обеспечивают возможность местной тканевой и внутриклеточной модуляции действия тиреоидных гормонов. Во-вторых, они способствуют адаптации организма к меняющимся условиям существования, например к дефициту йода или хроническим заболеваниям. В-третьих, они регулируют действие тиреоидных гормонов на ранних стадиях развития многих позвоночных - от амфибий до человека.

Дейодированию подвергается около 80% Т4:35% превращается в Т3 и 45% - в рТ3. Остальная его часть инактивируется, соединяясь с глюкуроновой кислотой в печени и выделяясь с желчью, а также (в меньшей степени) путем соединения с серной кислотой в печени или почках. Другие метаболические реакции включают дезаминирование аланиновой боковой цепи (в результате чего образуются производные тироуксусной кислоты с низкой биологической активностью), декарбоксилирование или расщепление эфирной связи с образованием неактивных соединений.

В результате всех этих метаболических превращений ежесуточно теряется примерно 10% общего количества (около 1000 нмоль) Т4, содержащегося вне щитовидной железы, и его t1/2 в плазме составляет 7 суток. Т3 связывается с белками плазмы с меньшим сродством, и поэтому его кругооборот происходит более быстро (t1/2 в плазме - 1 сутки). Общее количество рТ3 в организме почти не отличается от такового Т3, но обновляется еще быстрее (t1/2 в плазме всего 0,2 суток).

Анонс статьи на тему здоровье — Исправление прикуса у ребенка все о брекет-системах

… Сроки исправления прикуса зависят от степени деформации зубных рядов, сложности патологии прикуса и ортодонтической аппаратуры, на которой будет производиться лечение. В среднем это занимает от 8 месяцев долет.

Анонс статьи на тему здоровье — Витамины в пожилом и старческом возрасте

… Учитывая витаминный и микронутриентный дефицит в котором находятся наши пожилые пациенты, не только в зимнее время года, целесообразным считается принимать витаминно-минеральные комплексы на протяжении всего года, вне зависимости от сезона. Важно помнить, что витаминно-минеральные комплексы — это не лечебные препараты, а профилактические. Поэтому пожилые люди сами могут определить наиболее приемлемые время и длительность приема: сезонно или постоянно. Например, можно проводить витаминную профилактику в течение 1 месяца, а затем делать перерыв на 10 — 15 дней. И конечно в темное время года прием витаминов не должен прекращаться.

Анонс статьи на тему здоровье — Как позаботиться о давлении весной

… Весной пробуждается природа, и мы – в том числе. Однако помимо радости смена сезона приносит и много хлопот. С переменой температур нам каждый раз приходится подстраиваться под новые условия, менять немного уход за кожей, больше внимания уделять увлажнению или утеплению, защите от ветра или жары. Но, пожалуй, тяжелее всего, встречать весну, когда организм исчерпал накопленный запас витаминов, тянется к солнцу, а тут еще как назло давление… Как быть гипертоникам и гипоникам?

Вырабатываемые щитовидной железой, отвечающие за регулирование обмена веществ. Для производства Т3 и Т4 необходим йод. Дефицит йода приводит к снижению производства Т3 и Т4, в результате чего наблюдается расширение тканей щитовидной железы и развитие заболевания, известного как зоб. Основной формой гормонов щитовидной железы в крови является тироксин (Т4), имеющий более длительный период полураспада, чем Т3. Отношение Т4 к Т3, выбрасываемым в кровоток, составляет примерно 20 к 1. T4 преобразуется в активный Т3 (в три-четыре раза более мощный, чем Т4) в клетках при помощи дейодиназ (5"-иодиназа). Затем вещество подвергается декарбоксилированию и дейодированию, производя иодотиронамин (T1a) и тиронамин (T0a). Все три изоформы дейодиназ представляют собой селен-содержащие ферменты, поэтому для производства T3 организму требуется поступление из пищи.

Функции гормонов щитовидной железы

Тиронины действуют почти на все клетки организма. Они ускоряют основной обмен веществ, влияют на синтез белка, помогают регулировать рост длинных костей (действуя в синергии с ), отвечают за созревание нейронов и повышают чувствительность организма к катехоламинам (например, адреналину) благодаря пермиссивности. Гормоны щитовидной железы необходимы для нормального развития и дифференциации всех клеток организма человека. Эти гормоны регулируют также белковый, жировой и углеводный обмен, влияя на то, как человеческие клетки используют энергетические соединения. Кроме того, эти вещества стимулируют метаболизм витаминов. На синтез гормонов щитовидной железы влияют многочисленные физиологические и патологические факторы.
Тиреоидные гормоны влияют на выделение тепла в организме человека. Тем не менее, все еще неизвестен механизм, путем которого тиронамины ингибируют активность нейронов, играющий важную роль в циклах спячки млекопитающих и в линьке у птиц. Одним из эффектов применения тиронаминов является резкое снижение температуры тела.

Синтез гормонов щитовидной железы

Центральный синтез

Гормоны щитовидной железы (Т3 и Т4) синтезируются фолликулярными клетками щитовидной железы и регулируются произведенными тиреотропным гормоном (ТТГ) тиротропами из передней доли гипофиза. Эффекты T4 в естественных условиях опосредованы Т3 (Т4 преобразуется в тканях-мишенях в Т3). Активность T3 в 3-5 раз выше активности Т4.
Тироксин (3,5,3",5"-тетрайодтиронин) производится фолликулярными клетками щитовидной железы. Он производится в качестве предшественника тиреоглобулина (это не то же самое, что тироксинсвязывающий глобулин), расщепляемого ферментами для получения активного Т4.
В ходе этого процесса осуществляются следующие шаги:
Na + / I- симпортер транспортирует два иона натрия через базальную мембрану клеток фолликулов вместе с ионом йода. Он представляет собой вторичный активный транспортер, который использует градиент концентрации Na+, чтобы переместить I- против градиента концентрации.
I- перемещается по апикальной мембране в коллоид фолликула.
Тиреопероксидаза окисляет два I-, формируя I2. Йодид не является реакционным веществом, и для осуществления следующего шага требуется более реакционный йод.
Тиреопероксидаза иодирует остатки тиреоглобулина в коллоиде. Тиреоглобулин синтезируется на ЭР (эндоплазматическом ретикулуме) фолликулярной клетки и секретируется в коллоид.
Тиреотропный гормон (ТТГ), высвобождаемый из гипофиза, связывает рецептор ТТГ (Gs белок-связанный рецептор) на базолатеральной мембране клетки и стимулирует эндоцитоз коллоида.
Эндоцитозированные пузырьки вплавляются в лизосомы фолликулярной клетки. Лизосомальные ферменты отщепляют T4 от йодированного тиреоглобулина.
Эти пузырьки затем подвергаются экзоцитозу, высвобождая гормоны щитовидной железы.
Тироксин производится путем присоединения атомов иода к кольцевым структурам молекул . Тироксин (Т4) содержит четыре атома йода. Трийодтиронин (Т3) идентичен Т4, но в его молекуле содержится на один атом йода меньше.
Йодид активно поглощается из крови в ходе процесса, называемого захват йодида. Натрий здесь котранспортируется с йодидом из базолатеральной стороны мембраны в клетку и затем накапливается в фолликулах щитовидной железы в концентрациях, в тридцать раз превышающих его концентрации в крови. Посредством реакции с ферментом тиреопероксидазы, йод связывается с остатками в молекулах тиреоглобулина, образуя монойодтирозин (МИТ) и дийодтирозин (ДИТ). При связывании двух фрагментов ДИТ образуется тироксин. Сочетание одной частицы МИТ и одной частицы ДИТ производит трийодтиронин.
DIT + MIT = R- T3 (биологически неактивный)
MIT + DIT = трийодтиронин (Т3)
DIT + DIT = тироксин (Т4)
Протеазы перерабатывают йодированный тиреоглобулин, высвобождая гормоны Т4 и Т3, биологически активные вещества, играющие центральную роль в регуляции метаболизма.

Периферийный синтез

Тироксин является прогормоном и резервуаром для наиболее активного и основного тиреоидного гормона Т3. T4 преобразуется в тканях при помощи дейодиназы йодтиронина. Дефицит дейодиназы может имитировать дефицит йода. T3 более активен, чем Т4, и является конечной формой гормона, хотя он присутствует в организме в меньшем количестве, чем Т4.

Начало синтеза гормонов щитовидной железы у плода

Тиреотропин-рилизинг-гормон (ТРГ) высвобождается из гипоталамуса на 6-8 недель. Секреция тиреотропного гормона (ТТГ) из гипофиза плода становится заметной на 12 неделе беременности, а на 18-20 неделе производство (Т4) у плода достигает клинически значимого уровня. Трийодтиронин (Т3) у плода все еще остается на низком уровне (менее 15 нг / дл) до 30 недель беременности, а затем увеличивается до 50 нг/дл. Достаточная выработка гормонов щитовидной железы у плода защищает плод от возможных аномалий развития мозга, вызванных гипотиреозом у матери.

Дефицит йода и синтез гормонов щитовидной железы

Если в рационе наблюдается недостаток йода, щитовидная железа не сможет производить гормоны щитовидной железы. Недостаток гормонов щитовидной железы приводит к снижению отрицательной обратной связи на гипофизе, что ведет к увеличению производства тиреотропного гормона, способствуя увеличению щитовидной железы (эндемический коллоидный зоб). При этом щитовидная железа увеличивает накопление йодида, компенсируя дефицит йода, что позволяет производить достаточное количество гормонов щитовидной железы.

Циркуляция и транспорт гормонов щитовидной железы

Плазменный транспорт

Большинство тиреоидных гормонов, циркулирующих в крови, связаны с транспортировкой белков. Только очень небольшая часть циркулирующих гормонов являются свободными (несвязанными) и биологически активными, следовательно, измерение концентрации свободных тиреоидных гормонов имеет важное диагностическое значение.
Когда гормон щитовидной железы является связанным, он не активен, поэтому особое значение представляет количество свободных T3/T4. По этой причине не так эффективно измерение общего количества в крови.
Несмотря на то, что T3 и T4 являются липофильными веществами, они пересекают клеточную мембрану с помощью АТФ-зависимого транспорта, опосредованного переносчиками. Тиреоидные гормоны функционируют с помощью хорошо изученного набора ядерных рецепторов в ядре клетки, рецепторов тиреоидных гормонов.
T1a и T0a заряжены положительно и не пересекают мембрану. Они функционируют благодаря остаточному рецептору, связанному с аминами, TAAR1 (TAR1, TA1), G-белок связанным рецептором, располагающимся в клеточной мембране.
Другим важным диагностическим инструментом является измерение количества имеющегося тиреотропного гормона (ТТГ).

Мембранный транспорт гормонов щитовидной железы

Вопреки общепринятому мнению, гормоны щитовидной железы не способны пересекать клеточные мембраны пассивным образом, как другие липофильные вещества. Йод в орто-положении делает фенольную ОН-группу более кислой, в результате чего наблюдается отрицательный заряд при физиологическом рН. Тем не менее, у людей были выявлены по крайней мере 10 различных активных, зависящих от энергии и генетически регулируемых транспортеров йодтиронина. Благодаря им внутри клеток наблюдаются более высокие уровни гормонов щитовидной железы, чем в плазме крови или интерстициальной жидкости.

Внутриклеточный транспорт гормонов щитовидной железы

Мало что известно о внутриклеточной кинетике тиреоидных гормонов. Недавно, однако, было продемонстрировано, что кристаллин CRYM связывает 3,5,3"-трийодтиронин в естественных условиях.

Анализ крови для измерения уровней гормонов щитовидной железы

Можно количественно измерить уровни и путем измерения либо свободного , либо свободного трийодтиронина, что является показателями активности и трийодтиронина в организме. Также может быть измерено общее количество или трийодтиронина, которое также зависит от и трийодтиронина, связанных с тироксин-связывающим глобулином. Связанным параметром является индекс свободного , который вычисляется путем умножения общего количества на поглощение тиреоидного гормона, которое, в свою очередь, является показателем несвязанного тироксин-связывающего глобулина.

Роль гормонов щитовидной железы в организме человека

Увеличение сердечного выброса
Увеличение частоты сердечных сокращений
Увеличение интенсивности вентиляции
Ускорение основного обмена веществ
Потенцирование эффектов катехоламинов (т.е. повышение симпатической активности)
Усиление развития мозга
Насыщение эндометрия у женщин
Ускорение метаболизма белков и углеводов

Медицинское использование гормонов щитовидной железы

Как Т3, так и Т4 используются для лечения дефицита гормона щитовидной железы (гипотиреоза). Оба вещества хорошо впитываются в кишечнике, поэтому их можно принимать перорально. Левотироксин – это фармацевтическое название левотироксина натрия (Т4), который метаболизируется медленнее T3 и, следовательно, обычно требует приема только один раз в день. Натуральные высушенные гормоны щитовидной железы извлекаются из щитовидной железы свиней. «Натуральное» лечение гипотиреозом предполагает прием 20% T3 и небольших количеств Т2, Т1 и кальцитонина. Также имеются синтетические комбинации T3/T4 в различных соотношениях (например, liotrix), а также препараты, содержащие T3 без примесей (лиотиронин). Левотироксин натрий, как правило, входит в первый пробный курс лечения. Некоторые пациенты считают, что для них лучше использовать высушенный тиреотропный гормон, однако, такое предположение основано на неофициальных данных и клинические испытания не показали преимущества натурального гормона перед биосинтезированными формам.
Тиронамины все еще не применяются в медицине, однако, их предполагается использовать для контроля индукции гипотермии, что заставляет мозг входить в защитный цикл, что полезно для предотвращения повреждений при ишемическом шоке.
Впервые синтетический тироксин был успешно произведен Чарльзом Робертом Харрингтоном и Джорджем Баргером в 1926 году.

Препараты гормонов щитовидной железы

Сегодня большинство пациентов принимают левотироксин или аналогичные синтетические формы гормона щитовидной железы. Тем не менее, по-прежнему доступны натуральные добавки тиреоидного гормона из высушенной щитовидной железы животных. Натуральный тиреоидный гормон становится менее популярным, в связи с появлением данных о том, что в щитовидной железе животных имеются различные концентрации гормонов, из-за чего различные препараты могут иметь различные потенцию и стабильность. Левотироксин содержит только T4 и, следовательно, в значительной степени неэффективен для пациентов, которые не могут осуществлять преобразования Т4 в Т3. Таким пациентам может больше подойти использование естественного гормона щитовидной железы, поскольку в нем содержится смесь Т4 и Т3, или же синтетические добавки T3. В таких случаях синтетический лиотиронин является более предпочтительным, нежели натуральный. Нелогично принимать только T4, если пациент не способен преобразовывать Т4 в Т3. Некоторые препараты, содержащие натуральный гормон щитовидной железы, одобрены F.D.A., в то время как другие – нет. Гормоны щитовидной железы, как правило, хорошо переносятся. Тиреоидные гормоны, как правило, не представляют опасности для беременных женщин и кормящих матерей, однако прием препарата обязательно должен осуществляться под наблюдением врача. Женщины с гипотиреозом без надлежащего лечения имеют повышенный риск рождения ребенка с врожденными дефектами. Во время беременности женщинам с плохо функционирующей щитовидной железой также необходимо увеличить дозу гормонов щитовидной железы. Единственным исключением является то, что прием тиреоидных гормонов может усугубить тяжесть болезней сердца, особенно у пожилых пациентов; таким образом, врачи могут поначалу назначать таким пациентам более низкие дозы и предпринимать все возможное для того, чтобы избежать риска сердечного приступа.

Заболевания, связанные с недостатком и с избытком гормонов щитовидной железы

Как избыток, так и недостаток могут вызывать развитие различных заболеваний.
Гипертиреоз (примером является болезнь Грейвса), клинический синдром, вызванный избытком циркулирующего свободного , свободного трийодтиронина, или обоих веществ. Это распространенное заболевание, которым страдает приблизительно 2% женщин и 0,2 % мужчин. Иногда гипертиреоз путают с тиреотоксикозом, однако между этими заболеваниями имеются тонкие различия. Несмотря на то, что при тиреотоксикозе также увеличиваются уровни циркулирующих гормонов щитовидной железы, это может быть вызвано приемом таблеток или сверхактивностью щитовидной железы, в то время как гипертиреоз может быть вызван только сверхактивностью щитовидной железы.
Гипотиреоз (пример – тиреоидит Хашимото), представляет собой заболевание, при котором наблюдается дефицит , триидотиронина, или обоих веществ.
Клиническая депрессия иногда может быть вызвана гипотиреозом. Исследования показали, что Т3 содержится в стыках синапсов и регулирует количество и активность серотонина, норадреналина и () в мозге.
При преждевременных родах могут наблюдаться нарушения развития нервной системы из-за отсутствия материнских гормонов щитовидной железы, когда собственная щитовидная железа ребенка еще не в состоянии удовлетворить послеродовые потребности организма.

Антитиреоидные препараты

Поглощение йода против градиента концентрации опосредовано симпортером натрий-йод и связано с АТФазой натрий-калий. Перхлорат и тиоцианат – это препараты, которые могут конкурировать с йодом на этом участке. Такие соединения, как гоитрин, могут снизить производство гормонов щитовидной железы, препятствуя окислению йода.

Щитовидная железа , расположенная сразу ниже гортани, кпереди и но обе стороны от трахеи, является одной из наиболее крупных эндокринных желез (ее масса - от 15 до 20 г у взрослых в норме). Щитовидная железа секретирует два важных гормона: тирозин и трийодтиронин, обычно обозначаемых соответственно как Т3 и Т4. Оба эти гормона резко увеличивают скорость обменных процессов в организме. Полное отсутствие секреции щитовидных желез снижает основной обмен на 40-50% относительно нор мы, а чрезвычайно высокий уровень активности железы может повышать его на 60-100%. Секреция щитовидных желез регулируется главным образом тирсотропным гормоном, продуцируемым передней долей гипофиза.
Щитовидные железы синтезируют также кальцитонин - важный гормон, регулирующий обмен кальция.

Цель статей нашего сайта - рассмотрение образования и секреции гормонов щитовидной железы и их метаболических функций, а также регуляции функций щитовидной железы.

Почти 93% активности гормонов щитовидной железы , влияющих на обменные процессы, обусловлены тироксином и лишь 7% - трийод-тиронином. Однако почти весь тироксин в тканях в итоге превращается в трийодтиронин, поэтому оба эти гормона функционально важны. Эффекты действия этих гормонов практически одинаковы, но различаются по скорости и интенсивности. Трийодтиронин почти в 4 раза активнее тироксина, но присутствует в крови в гораздо меньшем количестве, и время его пребывания в крови заметно короче, чем тироксина.

Функциональная анатомия щитовидной железы . Щитовидная железа, состоит из большого количества замкнутых фолликулов (от 100 до 300 мкм в диаметре), заполненных продуцируемым веществом, названным коллоидом, и отграниченных кубовидными эпителиальными клетками, выделяющими секрет в просвет фолликулов. Коллоид состоит преимущественно из крупномолекулярного гликопротеина тиреоглобулина, включающего гормоны щитовидной железы. Продукты секреции, содержащиеся в фолликулах, должны абсорбироваться в кровь, пройдя через фолликулярный эпителий. Кровоснабжение щитовидной железы - больше, чем любой другой области тела, за исключением только коры надпочечников. Минутный кровоток через щитовидные железы почти в 5 раз превышает массу самих желез.

Синтез гормонов щитовидной железы - йодная ловушка

Для образования нормального количества тироксина необходимо поступление в организм почти 50 мг йода в виде йодидов в течение года, или около 1 мг в неделю. Для предотвращения дефицита йода обычная столовая соль йодируется: к каждым 100000 частям хлорида натрия добавляют 1 часть йоди-да натрия.

Потребление с пищей йодидов . Йодиды, попавшие с пищей в желудочно-кишечный тракт, всасываются в кровь точно так же, как хлориды. Большинство йодидов в норме быстро экскретируются почками, и лишь менее 1/5 избирательно извлекаются из циркулирующей крови клетками щитовидной железы и используются для синтеза тиреоидных гормонов.

Первой стадией образования гормонов щитовидной железы, является транспорт йодидов из крови в клетки и фолликулы щитовидной железы. Базальная мембрана клеток щитовидной железы обладает специфической способностью активно закачивать йодиды внутрь клеток. Этот процесс называют йодной «ловушкой». В норме концентрация йода в щитовидной железе в 30 раз выше, чем в крови, а при максимальной активности железы концентрация йода увеличивается в 250 раз по сравнению с концентрацией в крови. Скорость захвата йода щитовидной железой зависит от ряда факторов, наиболее важным из которых является концентрация тиреотропного гормона; ТТГ стимулирует, а гипофизэктомия резко снижает активность йодного насоса.

Учебное видео гормоны щитовидной железы в норме и при болезни

Оглавление темы "Физиология обмена гормонов щитовидной железы":
Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы Галина Ивановна Дядя

II. Синтез, секреция, метаболизм и механизм действия тиреоидных гормонов

Щитовидная железа продуцирует ряд гормонов. Рассмотрим основные из них:

1) Т3– трийодтиронин;

2) Т4 – тироксин.

Гормон Т4 впервые был получен в 1915 г., а гормон Т3 – только в 1952 г. Трийодтиронин более активен.

Исходными продуктами биосинтеза тиреоидных гормонов служат аминокислота тирозин и йод. В норме человек усваивает 120–140 мкг йода в сутки. Йод поступает в организм в основном через желудочно-кишечный тракт с пищей и водой в виде йодидов и органических соединений. Было обнаружено, что с пищевыми продуктами растительного происхождения человек получает 58,3 %, с мясом – 33,3 %, с водой – 4,2 % и с воздухом – 4,2 % йода. В процессе пищеварения и всасывания вне зависимости от формы поступления (органический или неорганический) йод поступает в кровь в виде неорганического йодида. Кроме того, йодид образуется в процессе обмена тиреоидных гормонов в тканях организма. Йодид из крови захватывается клетками фолликулов щитовидной железы, а также слюнными железами и железами желудка. Однако йодид, захваченный слюнными железами и железами желудка, выделяется в неизменном виде с секретом этих желез в желудочно-кишечный тракт, откуда вновь всасывается в кровь. Экскреция (выведение) йода в основном происходит через почки.

В сыворотке крови йод определяется в виде неорганического йодида и в комплексе с белками. Если количество неорганического йода зависит от поступления его с пищей, то содержание йода, связанного с белками, относительно постоянно и является показателем активности щитовидной железы. В процессе образования и секреции тиреоидных гормонов выделяют последовательные этапы: захват йода, его органификацию, конденсацию и высвобождение тиреоидных гормонов.

Поступление и концентрирование неорганического йодида усиливаются под влиянием ТТГ (тиреотропного гормона гипофиза), а тормозятся ингибиторами аэробного дыхания, окислительного фосфорилирования и некоторыми другими веществами. Вещества, тормозящие биосинтез тиреоидных гормонов, равноценны йодидам по величине зарядов ионов и, являясь конкурентами в процессах биосинтеза, тормозят их накопление. Кроме экзогенных, на биосинтез могут воздействовать внутренние факторы: нарушения в системе транспорта йодидов, изменения структуры белков. И Т4, и Т3 вырабатываются щитовидной железой в виде L-трийодтиронина и L-тироксина – наиболее активных изомеров. Образовавшиеся гормоны щитовидной железы сохраняются в составе тиреоглобулина в коллоиде фолликулов в качестве резервной формы, поступая по мере физиологической потребности в кровь.

Все этапы внутритиреоидного обмена, в том числе последняя фаза биосинтеза – секреция гормонов, контролируются содержанием тиреотропного гормона гипофиза (ТТГ) в плазме крови. Часть Т4 в щитовидной железе дейодируется в Т3.

Щитовидная железа – единственная эндокринная железа, имеющая в запасе большое количество гормонов. В норме запас покрывает потребности организма приблизительно в течение 2 месяцев. Это можно рассматривать как фактор приспособления к неодинаковому количеству йода в пище. Нормальная щитовидная железа продуцирует в среднем 80 % Т4 (тироксина) и 20 % Т3 (трийодтиронина).

Поступая в кровь, большая часть тиреоидных гормонов связывается с транспортирующими белками, основным из которых в плазме крови является тироксинсвязывающий глобулин (ТСГ).

Лишь 0,5 % Т4 в плазме крови не связано с белками. Физиологически активны только свободные формы тиреоидных гормонов. Связанная с белком часть гормонов играет роль депо, из которого по мере использования свободных Т4 и Т3 происходит их возмещение благодаря отщеплению от транспортного белка. Период полувыведения Т4 из крови равен приблизительно 190 ч, Т3 – 19 ч. Эта разница в выведении и уравновешивает гормональную активность Т3 и Т4.

Наиболее важным процессом метаболизма тиреоидных гормонов является дейодирование, которое происходит в периферических тканях. Дейодиназы (ферменты, дейодирующие тиреоидные гормоны) есть в печени, почках, мышцах, мозге. Считают, что только 10–15 % циркулирующего в крови здорового человека Т3 секретировано щитовидной железой, тогда как 85–90 % представляют собой результат превращения Т4 в периферических тканях путем дейодирования. Печени и почкам принадлежит особо важная роль: в них происходят дейодирование и дальнейшая деградация тирозинов.

Главным фактором регуляции функции щитовидной железы является ТТГ (тиреотропный гормон), который вырабатывается тиротрофами передней доли гипофиза. Тиреотропный гормон является белковым гормоном. Структура его еще не установлена. Тиреотропный гормон стимулирует все этапы гормоногенеза в щитовидной железе, секрецию ее гормонов, а также рост и размножение тиреоцитов. Секрецию самого тиреотропного гормона контролируют два основных фактора: эффект тиреоидных гормонов по механизму обратной связи и стимулы, опосредуемые центральной нервной системой. По законам обратной связи концентрация Т4 (тироксина) и Т3 (трийодтиронина) в крови контролирует уровень тиреотропного гормона. Содержание тиреоидных гормонов (Т3 и Т4) и ТТГ изменяется в противоположном направлении: нехватка тиреоидных гормонов усиливает секрецию ТТГ, а избыток – уменьшает. Другими словами, тиреоидные гормоны (тироксин и трийодтиронин) тормозят синтез и высвобождение тиреотропного гормона. Отечественные авторы показали роль функционального состояния ЦНС (коры головного мозга) в секреции гормонов щитовидной железы.

Действие желез внутренней секреции нельзя рассматривать обособленно, без учета воздействия других эндокринных органов. Так, например, кортизол (гормон надпочечников) понижает синтез и секрецию тиреоидных гормонов, уменьшает захват радиоактивного йода щитовидной железой, что объясняют как прямым действием на паренхиму железы, так и снижением тиреотропной функции гипофиза в этих условиях. Эстрогены (гормоны яичников) не изменяют исходного уровня тиреотропного гормона, но повышают его реакцию на тирео-рилизинггормон (ТРГ). Предполагают, что в основе тормозящего эффекта гормона роста на секрецию ТТГ лежит стимуляция секреции соматостатина, который и угнетает реакцию ТТГ на ТРГ. Адреналин и норадреналин в зависимости от условий могут и усиливать, и подавлять функцию щитовидной железы. Введение экзогенных тиреоидных гормонов угнетает ее.

Из книги Заболевания щитовидной железы: лечение и профилактика автора Леонид Рудницкий

Биологическое действие тиреоидных гормонов Нормально функционирующая щитовидная железа необходима человеку, так как с ее помощью обеспечиваются жизненно важные функции организма. Ее гормоны необходимы для нормальной деятельности большинства, если не всех его органов

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

2. Свойства гормонов, механизм их действия Выделяют три основных свойства гормонов:1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);2) строгую специфичность действия (ответные реакции на действие

автора Марина Геннадиевна Дрангой

3. Синтез, секреция и выделение гормонов из организма Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках. Генетический

Из книги Анализы. Полный справочник автора Михаил Борисович Ингерлейб

26. Свойства гормонов, механизм их действия в организме Выделяют три основных свойства гормонов:1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования);2) строгую специфичность действия;3) высокую

Из книги Минимум жира, максимум мышц! автора Макс Лис

27. Синтез, секреция и выделение гормонов из организма Биосинтез гормонов – цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокринных клетках.Генетический

Из книги Как перестать храпеть и дать спать другим автора Юлия Сергеевна Попова

Тест поглощения тиреоидных гормонов Тест поглощения тиреоидных гормонов – метод оценки функции щитовидной железы.Показания к назначению анализа: диагностика гипотиреоза и гипертиреоза. Тест чаще назначается одновременно с определением общего тироксина (см.).Норма:

Из книги Современные хирургические инструменты автора Геннадий Михайлович Семенов

Синтез стероидных гормонов Выключателем, который ответственен за синтез стероидных гормонов, является клеточный регулятор цАМФ. Он и его связанный фермент (киназа белка А) активизируют синтез стероидных гормонов. Эти стимулирующие пептидные гормоны посылают половым

Из книги Как сбалансировать гормоны щитовидной железы, надпочечников, поджелудочной железы автора Галина Ивановна Дядя

Механизм действия гормонов Гормоны были открыты учеными в 1902 году. Согласно определению большинства специалистов, это органические химические соединения, вырабатываемые определенными железами и клетками и оказывающие сложное и многогранное воздействие на

Из книги Болезни щитовидной железы. Лечение без ошибок автора Ирина Витальевна Милюкова

7.1. Механизм действия Плазменный поток, предназначенный для рассечения тканей, образуется при пропускании через высокоскоростную струю инертного газа электрического тока большой силы:– плазмообразующий газ – аргон;– ток разряда – 10–30 А;– напряжение разряда – 25–35

Из книги Нормальная физиология автора Николай Александрович Агаджанян

III. Физиологические эффекты тиреоидных гормонов Физиологическое действие тиреоидных гормонов разнообразно. Они влияют почти на все процессы обмена и функцию многих органов и тканей. У человека тиреоидные гормоны особенно важны для развития центральной нервной системы

Из книги Похудеть может каждый автора Геннадий Михайлович Кибардин

IV. Заболевания щитовидной железы, при которых нарушается секреция гормонов 1. Диффузный токсический зоб (ДТЗ)Это заболевание аутоиммунной природы, в основе которого лежит гиперфункция щитовидной железы и повышение продукции тиреоидных гормонов. При этом, как правило,

Из книги автора

III. Физиологические эффекты гормонов коры надпочечников в организме и механизм их действия Продуцируемые надпочечниками соединения оказывают влияние на многие процессы обмена веществ и функции организма.Гормоны коры надпочечников активно влияют на обменные процессы

Из книги автора

IV. Физиологические эффекты гормонов мозгового слоя надпочечников – катехоламинов и механизм их действия Эффекты катехоламинов начинаются с взаимодействия со специфическими рецепторами клеток-«мишеней». Если рецепторы тиреоидных и стероидных гормонов локализуются

Из книги автора

Препараты тиреоидных гормонов Препараты тиреоидных гормонов - гормонов щитовидной железы - применяются прежде всего в качестве заместительной терапии при гипотиреозе. Кроме того, их назначают для супрессивной (подавляющей) терапии при диффузном нетоксическом зобе и

Из книги автора

Механизмы действия гормонов. Существуют два основных механизма действия гормонов на уровне клетки: реализация эффекта с наружной поверхности клеточной мембраны и реализация эффекта после проникновения гормона внутрь клетки.В первом случае рецепторы расположены на

Из книги автора

Механизм действия гормонов Протеиновые и стероидные гормоны отличаются друг от друга не только по химической структуре, но и по механизму действия.Стероидные гормоны и производные аминокислот (тироксин) действуют внутриклеточно. Они распознаются специфическими

В основе структуры тиреоидных гормонов лежит тирониновое ядро, которое состоит из двух конденсированных молекул L-тирозина. Химическая природа гормонов фолликулярной части щитовидной железы выяснена в деталях сравнительно давно. Важнейшая структурная характеристика гормонально-активных производных тиронина - наличие в их молекуле 3 или 4 атомов йода. Таковы трийодтиронин (3,5,3`-трийодтиронин, Т 3) и тироксин (3,5,3`,5`-тетрайодтиронин, Т 4) - гормоны фолликулярных клеток щитовидной железы позвоночных, осуществляющие регуляцию энергообмена, синтеза белка и развития организма .

Рис. 3 Структура гормонов щитовидной железы (слева направо): тиронин; тироксин; трийодтиронин; дийодтиронин.

Кроме того, образуются йодированные предшественники, моно- и дийодтирозины, не обладающие биологической активностью.

По химической структуре тиреоидные гормоны относятся к производным аминокислот, а именно тиронина. По физическому действию являются гормонами - исполнителями, действуя непосредственно на обменные процессы в клетках и тканях - мишенях .

Считается установленным, что все йодсодержащие гормоны, отличающиеся друг от друга содержанием йода, являются производными L-тиронина, который синтезируется в организме из аминокислоты L-тирозина.

Последовательность реакций, связанных с синтезом гормонов щитовидной железы, была расшифрована при помощи радиоактивного йода . Было показано, что введенный меченый йод прежде всего обнаруживается в молекуле монойодтирозина, затем - дийодтирозина и только потом - тироксина .

В настоящее время еще полностью не изучены ферментные системы, катализирующие промежуточные стадии синтеза этих гормонов, и природа фермента, участвующего в превращении йодидов в свободный йод, необходимый для йодирования 115 остатков тирозина в молекуле тиреоглобулина .

Синтез тиреоидных гормонов

Синтез йодида

Для нормального синтеза тиреоидных гормонов необходим адекватный захват йода, так как тиреоидные гормоны являются единственными соединениями организма, содержащими йод в своей структуре .

Йод, открытый почти 200 лет назад, относится к категории незаменимых для организма человека элементов, являясь облигатным компонентом для синтеза тиреоидных гормонов (ТГ) - тироксина (Т 4) и трийодтиронина (Т 3). В организм человека йод поступает с пищей, водой и воздухом. Суточная потребность в йоде зависит от возраста (табл. 1).

Таблица.1 Возрастные нормы, потребления йода в сутки

В регионах, расположенных около моря, содержание йода в воздухе может достигать 50 мкг в 1 м3, в морской рыбе и морепродуктах -- от 40 до 300 мкг на 100 г, меньше в продуктах животного происхождения (от 7 до 20 мкг на 100 г продукта). Наименьшее количество йода содержится в продуктах растительного происхождения. В процессе хранения и тепловой кулинарной обработки содержание йода быстро падает.

Более половины территорий Российской Федерации относятся к йоддефицитным регионам (по содержанию йода в воде и почве) с различной степенью выраженности йодного обеспечения. Кроме природной недостаточности к дефициту йода (ДИ) в организме могут привести следующие состояния:

2) генетически детерминированные тиреопатии, инфильтрация щитовидной железы при гистиоцитозах, саркоидозе;

3) повышенная потребность в йоде в подростковом возрасте, в период беременности и лактации;

4) наличие гиповитаминозов, гипо- и дисмикроэлементозов;

5) поступление йода в недоступной для всасывания форме;

6) воздействие медикаментозных препаратов и других факторов окружающей среды химической и физической природы, в том числе и радиационное воздействие .

Йодид, удаляемый из сыворотки щитовидной железой, возвращается в циркуляцию в виде йодтиронинов (тиреоидных гормонов), чей йод возвращается в основном во внеклеточную жидкости после периферического дейодирования. Пул йодированных гормонов включает находящиеся в циркулярном русле, а так же тиреоидные гормоны в тканях. Самым большим пулом обладает щитовидная железа, которая содержит 8000 мкг (рис.4).


Рис. 4.

Пул щитовидной железы характеризуется очень медленным оборотом, приблизительно 1% в сутки. На рисунке изображены нормальные пути метаболизма йода в состоянии равновесия йода. Стрелки указывают суточный переход из одного компартмента в дугой. Цифры в скобках указывают размеры пулов .





error: Контент защищен !!