Кора головного мозга: функции и особенности строения. Зоны и доли коры больших полушарий

Кора головного мозга — высший отдел ЦНС, который обеспечивает совершенную организацию поведения человека. По факту она предопределяет сознание, участвует в управлении мышлением, способствует обеспечению взаимосвязи с внешним миром и функционирования организма. Она устанавливает взаимодействие с внешним миром посредством рефлексов, что позволяет надлежащим образом адаптироваться к новым условиям.

Указанный отдел ответственный за работу самого мозга. Сверху определенных участков, взаимосвязанных с органами восприятия, образовались зоны, обладающие подкорковым белым веществом. Они важны при сложном обрабатывании данных. Вследствие появления такого органа в мозге начинается следующая стадия, на которой значение ее функционирования существенно возрастает. Данный отдел является органом, который выражает индивидуальность и сознательную деятельность индивида.

Общая информация о коре ГМ

Представляет собой поверхностный слой толщиной до 0,2 см, который покрывает полушария. Он предусматривает вертикально ориентированные нервные окончания. Этот орган содержит центростремительные и центробежные нервные отростки, нейроглии. Каждая доля этого отдела несет ответственность за определенные функции:

  • – слуховая функция и обоняние;
  • затылочная – зрительное восприятие;
  • теменная – осязание и вкусовые рецепторы;
  • лобная – речь, двигательная активность, сложные мыслительные процессы.

По факту кора предопределяет сознательную деятельность индивида, участвует в управлении мышлением, взаимодействует с внешним миром.

Анатомия

Выполняемые корой функции зачастую обусловлены ее анатомическим строением. Структура имеет свои характерные черты, выраженные в разном числе слоев, габаритах, анатомии образующих орган нервных окончаний. Специалисты выделяют следующие разновидности слоев, взаимодействующих между собой и помогающих функционировать системе в целом:

  • Молекулярный слой. Помогает создать хаотично связанных дендритных формирований с малым числом клеток, имеющих веретенообразную форму и обусловливающих ассоциативную деятельность.
  • Наружный слой. Выражается нейронами, имеющими разные очертания. После них локализуются внешние контуры структур, имеющих пирамидальную форму.
  • Наружный слой пирамидального типа. Предполагает наличие нейронов разных размеров. По форме данные клетки схожи с конусом. Сверху выходит дендрит, обладающий наибольшими размерами. связаны при помощи деления на незначительные образования.
  • Зернистый слой. Предусматривает нервные окончания незначительного размера, локализованных обособленно.
  • Пирамидальный слой. Предполагает наличие нейронных цепей, обладающих различными габаритами. Верхние отростки нейронов способны доходить до начального слоя.
  • Покров, содержащий нейронные связи, напоминающие веретено. Часть из них, находящаяся в нижней точке, может достигать уровня белого вещества.
  • Лобная доля
  • Играет ключевую роль для сознательной деятельности. Участвует в запоминании, внимании, мотивации и прочих задачах.

Предусматривает наличие 2 парных долей и занимает 2/3 всего мозга. Полушария осуществляют контроль противоположных сторон туловища. Так, левая доля регулирует работу мышц правой стороны и наоборот.

Лобные части имеют важное значение в последующем планировании, включая управление и принятие решений. Кроме того, они выполняют следующие функции:

  • Речевая. Способствует выражению словами мыслительных процессов. Поражение данного участку может повлиять на восприятие.
  • Моторика. Дает возможность влиять на двигательную активность.
  • Сравнительные процессы. Способствует проведению классификации предметов.
  • Запоминание. Каждый участок мозга имеет важное значение в процессах запоминания. Лобная часть формирует долгосрочную память.
  • Личностное формирование. Дает возможность взаимодействовать импульсам, памяти и прочим задачам, образующим главные характеристики индивида. Поражение лобной доли кардинальным образом меняет личность.
  • Мотивация. Большая часть чувствительных нервных отростков расположены в лобной части. Дофамин способствует поддержанию мотивационной составляющей.
  • Контроль внимания. Если лобные части не способны осуществлять управление вниманием, то формируется синдром нехватки внимания.

Теменная доля

Охватывает верхнюю и боковую части полушария, а также разделяются центральной бороздой. Функции, которые выполняет данный участок, различаются для доминантной и недоминантной сторон:

  • Доминантная (преимущественно левая). Несет ответственность за возможность понимания устройства целого через соотношение его составляющих и за синтез информации. Кроме того, дает возможность осуществления взаимосвязанных движений, которые требуются для получения конкретного результата.
  • Недоминантная (преимущественно правая). Центр, который перерабатывает данные, поступающие из затылочной части, и обеспечивает 3-хмерное восприятие происходящего. Поражение данного участка ведет к неспособности распознавания объектов, лиц, пейзажей. Так как зрительные образы перерабатываются в мозге обособленно от данных, поступающих из остальных органов чувств. Кроме того, сторона принимает участие в ориентации в пространстве человека.

Обе теменные части принимают участие в восприятии температурных изменений.

Височная

Она реализует сложную психическую функцию – речь. Расположена на обоих полушариях сбоку в нижней части, тесно взаимодействуя с близлежащими отделами. Данная часть коры обладает наиболее выраженными контурами.

Височные участки осуществляют обработку слуховых импульсов, преобразуя их в звуковой образ. Имеют важное значение в обеспечении речевых коммуникативных навыков. Непосредственно в данном отделе происходит распознавание услышанной информации, выбор языковых единиц для смысловой выраженности.

На сегодняшний день подтверждено, что возникновение сложностей с обонянием у больного преклонного возраста сигнализирует о формирующемся заболевании Альцгеймера.

Незначительный участок внутри височной доли (), осуществляет контроль долговременной памяти. Непосредственно височная часть накапливает воспоминания. Доминантный отдел взаимодействует с вербальной памятью, недоминантный способствует зрительному запоминанию образов.

Одновременное повреждение двух долей ведет к безмятежному состоянию, потере возможности идентификации внешних образов и повышенной сексуальности.

Островок

Островок (закрытая долька) расположен в глуби боковой борозды. От смежных отделов островок отделяется круговой бороздой. Верхний участок закрытой дольки разделяется на 2 части. Здесь проецируется вкусовой анализатор.

Формирующая дно латеральной борозды, закрытая долька является выступом, верхняя часть которого направлена наружу. Островок отделяется круговой бороздой от близлежащих долей, которые формируют покрышку.

Верхний отдел закрытой дольки подразделяется на 2 части. В первой локализуется прецентральная борозда, а находящаяся посреди них расположена передняя центральная извилина.

Борозды и извилины

Являют собой впадины и находящиеся посреди них складки, которые локализуются на поверхности мозговых полушарий. Борозды способствуют увеличению коры полушарий, не увеличивая объем черепной коробки.

Значимость данных участков заключается в том, что две трети всей коры располагаются в глуби борозд. Бытуют мнение, что полушария развиваются неодинаково в разных отделах, в результате этого напряжение будет также неравномерным в конкретных участках. Это может привести к формированию складок либо извилин. Другие ученые полагают, что большое значение имеет первоначальное развитие борозд.

Анатомическая структура рассматриваемого органа отличается многообразием функций.

Каждый отдел данного органа обладает специфическим предназначением, являясь своеобразным уровнем воздействия.

Благодаря им осуществляется все функционирование головного мозга. Нарушения в работе определенной зоны способно привести к сбоям в деятельности всего мозга.

Зона обработки импульсов

Данный участок способствует обработке нервных сигналов, поступающих через зрительные рецепторы, обоняние, осязание. Большинство рефлексов, взаимосвязанных с моторикой, будут обеспечены пирамидальными клетками. Зона, обеспечивающая обработку мышечных данных, характеризуется слаженной взаимосвязью всех слоев органа, что имеет ключевое значение на этапе соответствующего обрабатывания нервных сигналов.

Если кора мозга поражена на этом участке, то могут произойти нарушения в слаженном функционировании функций и действий по восприятию, неразрывно взаимосвязанных с моторикой. Внешне расстройства в двигательной части проявляются во время непроизвольной двигательной активности, судорогах, тяжелых проявлениях, которые ведут к параличу.

Зона сенсорного восприятия

Данная область отвечает за обработку импульсов, поступающих в мозг. По своей структуре она представляет собой систему взаимодействия анализаторов для установления взаимосвязи со стимулятором. Специалисты выделяют 3 отдела, отвечающих за восприятие импульсов. К ним относят затылочную, обеспечивающая обрабатывание зрительных образов; височную, которая связана со слухом; зону гиппокампа. Часть, которая несет ответственность за обработку данных стимуляторов вкуса, расположены рядом с теменем. Здесь располагаются центры, которые отвечают за прием и обработку тактильных импульсов.

Сенсорная способность непосредственно зависит от количества нейронных связей на этом участке. Примерно данные отделы занимают до пятой части от всего размера коры. Повреждение данного участка провоцирует ненадлежащее восприятие, что не позволит продуцировать встречный импульс, который был бы адекватен раздражителю. Например, нарушение в функционировании слуховой зоны не во всех случаях вызывает глухоту, однако способно спровоцировать некоторые эффекты, искажающие нормальное восприятие данных.

Ассоциативная зона

Этот отдел способствует контактированию между импульсами, принимаемыми нейронными связями в сенсорном отделе, и моторикой, которая представляет собой встречный сигнал. Эта часть формирует осмысленные поведенческие рефлексы, а также принимает участие в их осуществлении. По месту расположения выделяются передние зоны, располагающиеся в лобных частях, и задние, занявшие промежуточное положение посреди висков, теменем и затылочным участком.

Для индивида свойственны сильно развитые задние ассоциативные зоны. Данные центры обладают особым предназначением, гарантируя обрабатывание речевых импульсов.

Патологические изменения в работе переднего ассоциативного участка ведет к сбоям в проведении анализа, прогнозирования, на основе пережитых ранее ощущений.

Расстройства в функционировании заднеассоциативного участка усложняет пространственную ориентацию, делает медленнее абстрактные мыслительные процессы, конструирование и идентификацию сложных зрительных образов.

Кора головного мозга ответственна за работу головного мозга. Подобное вызвало изменения в анатомическом строении самого мозга, так как его работа существенно усложнилась. Сверху определенных участков, взаимосвязанных с органами восприятия и двигательным аппаратом, образовались отделы, которые обладают ассоциативными волокнами. Они необходимы для сложной обработки попадающих внутрь мозга данных. Вследствие формирования данного органа начинается новая стадия, где ее значимость существенно возрастает. Данный отдел считается органом, который выражает индивидуальные особенности человека и его сознательную деятельность.

Мозг это загадочный орган, который постоянно изучается учеными и остается до конца не исследованным. Система строения не простая и является сочетанием нейронных клеток, которые группируются в отдельные отделы. Кора головного мозга имеется у большинства животных и млекопитающих, но именно в человеческом организме она получила большего развития. Этому способствовала трудовая активность.

Почему мозг называют серым веществом или серой массой? Он сероватый, но в нем присутствует белый, красный и черные цвет. Серая субстанция представляет разные типы клеток, а белая нервную материю. Красный цвет это кровяные сосуды, а черный это меланин пигмент, который отвечает за окраску волос и кожи.

Строение мозга

Главный орган делится на пять основных частей. Первая часть продолговатая. Это продление спинного мозга, который контролирует связь с деятельностью тела и состоит из серой и белой субстанции. Вторая, средняя включает четыре бугорка, из которых два ответственные за слуховую, а два за зрительскую функцию. Третья, задняя включает мосток и церебеллум или мозжечок. Четвертая, буферная гипоталамус и таламус. Пятая, конечная, которая формирует два полушария.

Поверхность состоит из бороздочек и мозгов, покрытых оболочкой. Этот отдел составляет 80 % общего веса человека. Также мозг можно разделить на три части церебеллум, стволик и полушария. Он покрыт тремя слоями, которые предохраняют и питают основной орган. Это паутинный слой, в котором циркулирует мозговая жидкость, мягкий содержит кровяные сосуды, твердый близкий к мозгу и защищает его от повреждений.

Функции мозга


Мозговая деятельность включает основные функции серого вещества. Это чувствительные, зрительные, слуховые, обонятельные, осязательные реакции и моторные функции. Однако все главные центры управления находятся в продолговатой части, где координируется деятельность сердечно-сосудистой системы, защитных реакций и мышечной деятельности.

Двигательные пути продолговатого органа создают перекрещивание с переходом на противолежащую сторону. Это ведет к тому, что рецепторы сначала образуются в правой области, после чего поступают импульсы в левую область. Речь выполняется в больших полушариях мозга. Задний отдел отвечает за вестибулярный аппарат.

Кора больших полушарий головного мозга , слой серого вещества толщиной 1-5 мм, покрывающий полушария большого мозга млекопитающих животных и человека. Эта часть головного мозга, развившаяся на поздних этапах эволюции животного мира, играет исключительно важную роль в осуществлении психической, или высшей нервной деятельности, хотя эта деятельность является результатом работы мозга как единого целого. Благодаря двусторонним связям с нижележащими отделами нервной системы, кора может участвовать в регуляции и координации всех функций организма. У человека кора составляет в среднем 44% от объёма всего полушария в целом. Её поверхность достигает 1468-1670 см2.

Строение коры . Характерной особенностью строения коры является ориентированное, горизонтально-вертикальное распределение составляющих её нервных клеток по слоям и колонкам; таким образом, корковая структура отличается пространственно упорядоченным расположением функционирующих единиц и связей между ними. Пространство между телами и отростками нервных клеток коры заполнено нейроглией и сосудистой сетью (капиллярами). Нейроны коры подразделяются на 3 основных типа: пирамидные (80-90% всех клеток коры), звездчатые и веретенообразные. Основные функциональный элемент коры - афферентно-эфферентный (т. е. воспринимающий центростремительные и посылающий центробежные стимулы) длинноаксонный пирамидный нейрон. Звездчатые клетки отличаются слабым развитием дендритов и мощным развитием аксонов, которые не выходят за пределы поперечника коры и охватывают своими разветвлениями группы пирамидных клеток. Звездчатые клетки выполняют роль воспринимающих и синхронизирующих элементов, способных координировать (одновременно тормозить или возбуждать) пространственно близкие группы пирамидных нейронов. Корковый нейрон характеризуется сложным субмикроскопическим строением.Различные по топографии участки коры отличаются плотностью расположения клеток, их величиной и другими характеристиками послойной и колончатой структуры. Все эти показатели определяют архитектуру коры, или её цитоархитектонику Наиболее крупные подразделения территории коры - древняя (палеокортекс), старая (архикортекс), новая (неокортекс) и межуточная кора. Поверхность новой коры у человека занимает 95,6%, старой 2,2%, древней 0,6%, межуточной 1,6%.

Если представить себе кору мозга в виде единого покрова (плаща), одевающего поверхность полушарий, то основная центральная часть его составит новая кора, в то время как древняя, старая и межуточная займут место на периферии, т. е. по краям этого плаща. Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, нечетко отделённого от нижележащих подкорковых ядер; старая кора полностью отделена от последних и представлена 2-3 слоями; новая кора состоит, как правило, из 6-7 слоев клеток; межуточные формации - переходные структуры между полями старой и новой коры, а также древней и новой коры - из 4-5 слоев клеток. Неокортекс подразделяется на следующие области: прецентральную, постцентральную, височную, нижнетеменную, верхнетеменную, височно-теменно-затылочную, затылочную, островковую и лимбическую. В свою очередь, области подразделяются на подобласти и поля. Основной тип прямых и обратных связей новой коры - вертикальные пучки волокон, приносящие информацию из подкорковых структур к коре и посылающие её от коры в эти же подкорковые образования. Наряду с вертикальными связями имеются внутрикортикальные - горизонтальные - пучки ассоциативных волокон, проходящие на различных уровнях коры и в белом веществе под корой. Горизонтальные пучки наиболее характерны для I и III слоев коры, а в некоторых полях для V слоя.

Горизонтальные пучки обеспечивают обмен информацией как между полями, расположенными на соседних извилинах, так и между отдалёнными участками коры (например, лобной и затылочной).

Функциональные особенности коры обусловливаются упомянутым выше распределением нервных клеток и их связей по слоям и колонкам. На корковые нейроны возможна конвергенция (схождение) импульсов от различных органов чувств. Согласно современным представлениям, подобная конвергенция разнородных возбуждений - нейрофизиологический механизм интегративной деятельности головного мозга, т. е. анализа и синтеза ответной деятельности организма. Существенное значение имеет и то, что нейроны сведены в комплексы, по-видимому, реализующие результаты конвергенции возбуждений на отдельные нейроны. Одна из основных морфо-функциональных единиц коры - комплекс, называемый колонкой клеток, который проходит через все корковые слои и состоит из клеток, расположенных на одном перпендикуляре к поверхности коры. Клетки в колонке тесно связаны между собой и получают общую афферентную веточку из подкорки. Каждая колонка клеток отвечает за восприятие преимущественно одного вида чувствительности. Например, если в корковом конце кожного анализатора одна из колонок реагирует на прикосновение к коже, то другая - на движение конечности в суставе. В зрительном анализаторе функции восприятия зрительных образов также распределены по колонкам. Например, одна из колонок воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Второй комплекс клеток новой коры - слой - ориентирован в горизонтальной плоскости. Полагают, что мелкоклеточные слои II и IV состоят в основном из воспринимающих элементов и являются «входами» в кору. Крупноклеточный слой V - выход из коры в подкорку, а среднеклеточный слой III - ассоциативный, связывающий между собой различные корковые зоны

Локализация функций в коре характеризуется динамичностью в силу того, что, с одной стороны, имеются строго локализованные и пространственно отграниченные зоны коры, связанные с восприятием информации от определенного органа чувств, а с другой - кора является единым аппаратом, в котором отдельные структуры тесно связаны и в случае необходимости могут взаимозаменяться (т. н. пластичность корковых функций). Кроме того, в каждый данный момент корковые структуры (нейроны, поля, области) могут образовывать согласованно действующие комплексы, состав которых изменяется в зависимости от специфических и неспецифических стимулов, определяющих распределение торможения и возбуждения в коре. Наконец, существует тесная взаимозависимость между функциональным состоянием корковых зон и деятельностью подкорковых структур. Территории коры резко различаются по своим функциям. Большая часть древней коры входит в систему обонятельного анализатора. Старая и межуточная кора, будучи тесно связанными с древней корой как системами связей, так и эволюционно, не имеют прямого отношения к обонянию. Они входят в состав системы, ведающей регуляцией вегетативных реакций и эмоциональных состояний. Новая кора - совокупность конечных звеньев различных воспринимающих (сенсорных) систем (корковых концов анализаторов).

Принято выделять в зоне того или иного анализатора проекционные, или первичные, и вторичные, поля, а также третичные поля, или ассоциативные зоны. Первичные поля получают информацию, опосредованную через наименьшее количество переключений в подкорке (в зрительном бугре, или таламусе, промежуточного мозга). На этих полях как бы спроецирована поверхность периферических рецепторов.В свете современных данных, проекционные зоны нельзя рассматривать как устройства, воспринимающие раздражения «точку в точку». В этих зонах происходит восприятие определенных параметров объектов, т. е. создаются (интегрируются) образы, поскольку данные участки мозга отвечают на определенные изменения объектов, на их форму, ориентацию, скорость движения и т. п.

Корковые структуры играют первостепенную роль в обучении животных и человека. Однако образование некоторых простых условных рефлексов, главным образом с внутренних органов, может быть обеспечено подкорковыми механизмами. Эти рефлексы могут образовываться и на низших уровнях развития, когда ещё нет коры. Сложные условные рефлексы, лежащие в основе целостных актов поведения, требуют сохранности корковых структур и участия не только первичных зон корковых концов анализаторов, но и ассоциативных - третичных зон. Корковые структуры имеют прямое отношение и к механизмам памяти. Электрораздражение отдельных областей коры (например, височной) вызывает у людей сложные картины воспоминаний.

Характерная особенность деятельности коры - её спонтанная электрическая активность, регистрируемая в виде электроэнцефалограммы (ЭЭГ). В целом кора и её нейроны обладают ритмической активностью, которая отражает происходящие в них биохимические и биофизические процессы. Эта активность имеет разнообразную амплитуду и частоту (от 1 до 60 гц) и изменяется под влиянием различных факторов.

Ритмическая активность коры нерегулярна, однако можно по частоте потенциалов выделить несколько разных типов её (альфа-, бета-, дельта- и тета-ритмы). ЭЭГ претерпевает характерные изменения при многих физиологических и патологических состояниях (различных фазах сна, при опухолях, судорожных припадках и т. и.). Ритм, т. е. частота, и амплитуда биоэлектрических потенциалов коры задаются подкорковыми структурами, которые синхронизируют работу групп корковых нейронов, что и создаёт условия для их согласованных разрядов. Этот ритм связан с апикальными (верхушечными) дендритами пирамидных клеток. На ритмическую деятельность коры накладываются влияния, идущие от органов чувств. Так, вспышка света, щелчок или прикосновение к коже вызывают в соответствующих зонах т. н. первичный ответ, состоящий из ряда позитивных волн (отклонение электронного луча на экране осциллографа вниз) и негативной волны (отклонение луча вверх). Эти волны отражают деятельность структур данного участка коры и меняются в её различных слоях.

Филогенез и онтогенез коры . Кора - продукт длительного эволюционного развития, в процессе которого сначала появляется древняя кора, возникающая в связи с развитием обонятельного анализатора у рыб. С выходом животных из воды на сушу начинает интенсивно развиваться т. н. плащевидная, полностью обособленная от подкорки часть коры, которая состоит из старой и новой коры. Становление этих структур в процессе приспособления к сложным и разнообразным условиям наземного существования связано (совершенствованием и взаимодействием различных воспринимающих и двигательных систем. У земноводных кора представлена древней и зачатком старой коры, у пресмыкающихся хорошо развиты древняя и старая кора и появляется зачаток новой коры. Наибольшего развития новая кора достигает у млекопитающих, а среди них у приматов (обезьяны и человек), хоботных (слоны) и китообразных (дельфины, киты). В связи с неравномерностью роста отдельных структур новой коры её поверхность становится складчатой, покрываясь бороздами и извилинами. Совершенствование коры конечного мозга у млекопитающих неразрывно связано с эволюцией всех отделов центральной нервной системы. Этот процесс сопровождается интенсивным ростом прямых и обратных связей, соединяющих корковые и подкорковые структуры. Т. о., на более высоких этапах эволюции функции подкорковых образований начинают контролироваться корковыми структурами. Данное явление получило название кортиколизации функций. В результате кортиколизации ствол мозга образует с корковыми структурами единый комплекс, а повреждение коры на высших этапах эволюции приводит к нарушению жизненно важных функций организма. Наибольшие изменения и увеличение в процессе эволюции новой коры претерпевают ассоциативные зоны, в то время как первичные, сенсорные поля уменьшаются по относительной величине. Разрастание новой коры приводит к вытеснению старой и древней на нижнюю и срединную поверхности мозга.

Слой серого вещества, покрывающий мозговые полушария большого мозга. Кора головного мозга подразделяется на четыре доли: лобные, затылочные, височные и теменные. Часть коры, покрывающая большую часть поверхности полушарий мозга, называется неокортексом, так как она сформировалась на заключительных стадиях человеческой эволюции. Неокортекс можно подразделить на зоны в соответствии с их функциями. Разные части неокортекса связаны с сенсорными и моторными функциями; соответствующие участки коры головного мозга участвуют в планировании движений (лобные доли) или связаны с памятью и восприятием (затылочные доли).

Кора головного мозга

Специфика. Верхний слой полушарий головного мозга, состоящий прежде всего из нервных клеток с вертикальной ориентацией (пирамидныe клетки), а также из пучков афферентных (центростремительных) и эфферентных (центробежных) нервные волокон. В нейроанатомическом плане характеризуется наличием горизонтальных слоев, отличающихся шириной, плотностью, формами и размерами входящих в них нервных клеток.

Структура. Кору головного мозга разделяют на ряд областей, например в наиболее распространенной классификации цитоархитектонических формаций К.Бродмана в коре головного мозга человека выделено 11 областей и 52 поля. На основе данных филогенеза, выделяют новую кору, или неокортекс, старую, или архикортекс, и древнюю, или палеокортекс. По функциональному критерию, выделяют три типа областей: сенсорные зоны, которые обеспечивают прием и анализ афферентных сигналов, идущих от специфических релейных ядер таламуса, моторные, которые имеют двусторонние внутрикорковые связи со всеми сенсорными областями для взаимодействия сенсорных и моторных зон, и ассоциативные, не имеющие прямые афферентные или эфферентные связи с периферией, но связанные с сенсорными и моторными зонами.

КОРА ГОЛОВНОГО МОЗГА

Поверхность, покрывающая серое вещество, которое образует самый верхний уровень головного мозга. В эволюционном смысле это самое новое нервное образование, и приблизительно 9-12 миллиардов его клеток отвечают за основные сенсорные функции, моторную координацию и контроль, участие в регуляции интегративного, координированного поведения и, что наиболее важно, за так называемые "высшие психические процессы" речи, мышления, решения задач и т.д.

КОРА ГОЛОВНОГО МОЗГА

англ. cerebral cortex) - поверхностный слой, покрывающий полушария головного мозга, образован преимущественно вертикально ориентированными нервными клетками (нейронами) и их отростками, а также пучками афферентных (центростремительных) и эфферентных (центробежных) нервных волокон. Помимо этого в состав коры входят клетки нейро-глии.

Характерная особенность структуры К. г. м. - горизонтальная слоистость, обусловленная упорядоченным расположением тел нервных клеток и нервных волокон. В К. г. м. выделяют 6 (по данным некоторых авторов, 7) слоев, отличающихся по ширине, плотности расположения, форме и размерам составляющих их нейронов. Из-за преимущественно вертикальной ориентации тел и отростков нейронов, а также пучков нервных волокон К. г. м. имеет вертикальную исчерченность. Для функциональной организации К. г. м. большое значение имеет вертикальное, колонкообразное расположение нервных клеток.

Основным типом нервных клеток, входящих в состав К. г. м., являются пирамидные клетки. Тело этих клеток напоминает конус, от вершины которого отходит один толстый и длинный, апикальный дендрит; направляясь к поверхности К. г. м., он истончается и веерообразно делится на более тонкие конечные ветви. От основания тела пирамидной клетки отходят более короткие ба-зальные дендриты и аксон, направляющийся в белое вещество, расположенное под К. г. м., или ветвящийся в пределах коры. Дендриты пирамидных клеток несут на себе большое количество выростов, т. н. шипиков, которые принимают участие в формировании синаптических контактов с окончаниями афферентных волокон, приходящих в К. г. м. из др. отделов коры и подкорковых образований (см. Синапсы). Аксоны пирамидных клеток образуют основные эфферентные пути, идущие из К. г. м. Размеры пирамидных клеток варьируют от 5-10 мк до 120-150 мк (гигантские клетки Беца). Помимо пирамидных нейронов в состав К. г. м. входят звездчатые, веретенообразные и некоторые др. типы интернейронов, участвующих в приеме афферентных сигналов и формировании функциональных межнейронных связей.

Основываясь на особенностях распределения в слоях коры различных по величине и форме нервных клеток и волокон, всю территорию К. г. м. подразделяют на ряд областей (напр., затылочная, лобная, височная и др.), а последние - на более дробные цитоархитектонические поля, отличающиеся по своей клеточной структуре и функциональному значению. Общепринята классификация цитоархитектонических формаций К. г. м., предложенная К. Бродманом, который разделил всю К. г. м. человека на 11 областей и 52 поля.

Исходя из данных филогенеза, К. г. м. подразделяют на новую (неокортекс), старую (архикор-текс) и древнюю (палеокортекс). В филогенезе К. г. м. происходит абсолютное и относительное увеличение территорий новой коры при относительном уменьшении площади древней и старой. У человека на долю новой коры приходится 95,6%, в то время как древняя занимает 0,6%, а старая - 2,2% всей корковой территории.

Функционально в коре выделяют 3 типа областей: сенсорные, моторные и ассоциативные.

Сенсорные (или проекционные) корковые зоны осуществляют прием и анализ афферентных сигналов по волокнам, идущим из специфических релейных ядер таламуса. Сенсорные зоны локализованы в определенных областях коры: зрительная расположена в затылочной (поля 17, 18, 19), слуховая в верхних отделах височной области (поля 41, 42), соматосенсорная, анализирующая им-пульсацию, поступающую с рецепторов кожи, мышц, суставов, - в области постцентральной извилины (поля 1, 2, 3). Обонятельные ощущения связаны с функцией филогенетически более старых отделов коры (палеокортекс) - гиппокампо-ва извилина.

Моторная (двигательная) область - поле 4 по Бродману - находится на прецентральной извилине. Для двигательной коры характерно наличие в слое V гигантских пирамидных клеток Беца, аксоны которых образуют пирамидный тракт - основной двигательный тракт, нисходящий до моторных центров мозгового ствола и спинного мозга и обеспечивающий корковый контроль произвольных мышечных сокращений. Моторная кора имеет двусторонние внутрикорковые связи со всеми сенсорными областями, что обеспечивает тесное взаимодействие сенсорных и моторных зон.

Ассоциативные области. Кора больших полушарий человека характеризуется наличием обширной территории, не имеющей прямых афферентных и эфферентных связей с периферией. Эти области, связанные через обширную систему ассоциативных волокон с сенсорными и моторными зонами, получили название ассоциативных (или третичных) корковых зон. В задних отделах коры они расположены между теменными, затылочными и височными сенсорными областями, а в передних отделах они занимают основную поверхность лобных долей. Ассоциативная кора либо отсутствует, либо слабо развита у всех млекопитающих до приматов. У человека заднеассоциативная кора занимает примерно половину, а лобные области четверть всей поверхности коры. По строению они отличаются особенно мощным развитием верхних ассоциативных слоев клеток в сравнении с системой афферентных и эфферентных нейронов. Их особенностью является также наличие полисенсорных нейронов - клеток, воспринимающих информацию из различных сенсорных систем.

В ассоциативной коре расположены и центры, связанные с речевой деятельностью (см. Брока центр и Вернике центр). Ассоциативные области коры рассматриваются как структуры, ответственные за синтез поступающей информации, и как аппарат, необходимый для перехода от наглядного восприятия к абстрактным символическим процессам.

Клинические нейропсихологические исследования показывают, что при поражении заднеассо-циативных областей нарушаются сложные формы ориентации в пространстве, конструктивная деятельность, затрудняется выполнение всех интеллектуальных операций, которые осуществляются с участием пространственного анализа (счет, восприятие сложных смысловых изображений). При поражении речевых зон нарушается возможность восприятия и воспроизведения речи. Поражение лобных отделов коры приводит к невозможности осуществления сложных программ поведения, требующих выделения значимых сигналов на основе прошлого опыта и предвидения будущего. См. Блоки мозга, Кортпикализация, Мозг, Нервная система, Развитие коры головного мозга, Синдромы нейро-психологические. (Д. А. Фарбер.)

КОРА ГОЛОВНОГО МОЗГА (cortex encephali ) - все поверхности полушарий большого мозга, покрытые плащом (pallium), образованным серым веществом. Вместе с другими отделами ц. н. с. кора участвует в регуляции и координации всех функций организма, играет исключительно важную роль в психической, или высшей нервной деятельности (см.).

В соответствии с этапами эволюционного развития ц. н. с. кору делят на старую и новую. Старая кора (archicortex - собственно старая кора и paleocortex - древняя кора) - филогенетически более древнее образование, чем новая кора (neocortex), появившаяся в процессе развития больших полушарий головного мозга (см. Архитектоника коры головного мозга , Головной мозг).

Морфологически К. г. м. образована нервными клетками (см.), их отростками и нейроглией (см.), имеющей опорно-трофическую функцию. У приматов и человека в коре насчитывается ок. 10 млрд. нейроцитов (нейронов). В зависимости от формы различают пирамидальные и звездчатые нейроциты, которые характеризуются большим разнообразием. Аксоны пирамидальных нейроцитов направляются в подкорковое белое вещество, а их апикальные дендриты - в наружный слой коры. Звездчатые нейроциты имеют только внутрикорковые аксоны. Дендриты и аксоны звездчатых нейроцитов обильно ветвятся вблизи клеточных тел; часть аксонов подходит к наружному слою коры, где они, следуя горизонтально, образуют густое сплетение с вершинами апикальных дендритов пирамидальных нейроцитов. Вдоль поверхности дендритов имеются почковидные выросты, или шипики, которые представляют собой область аксодендритных синапсов (см.). Мембрана тела клетки является областью аксосоматических синапсов. В каждой области коры имеется множество входных (афферентных) и выходных (эфферентных) волокон. Эфферентные волокна идут к другим областям К. г. м., к подкорковым образованиям или к двигательным центрам спинного мозга (см.). Афферентные волокна входят в кору от клеток подкорковых структур.

Древняя кора у человека и высших млекопитающих состоит из одного клеточного слоя, слабо отдифференцированного от нижележащих подкорковых структур. Собственно старая кора состоит из 2-3 слоев.

Новая кора имеет более сложное строение и занимает (у человека) ок. 96% всей поверхности К. г. м. Поэтому, когда говорят о К. г. м., то обычно подразумевают новую кору, к-рую подразделяют на лобную, височную, затылочную и теменную доли. Эти доли делят на области и цитоархитектонические поля (см. Архитектоника коры головного мозга).

Толщина коры у приматов и человека варьирует от 1,5 мм (на поверхности извилин) до 3-5 мм (в глубине борозд). На срезах, окрашенных по Нисслю, видно слоистое строение коры, к-рое зависит от группировки нейроцитов на разных ее уровнях (слоях). В коре принято различать 6 слоев. Первый слой беден клеточными телами; второй и третий - содержат малые, средние и большие пирамидальные нейроциты; четвертый слой - зона звездчатых нейроцитов; пятый слой содержит гигантопирамидальные нейроциты (гигантские пирамидные клетки); шестой слой характеризуется наличием мультиформных нейроцитов. Однако шестислойная организация коры не является абсолютной, т. к. в действительности во многих отделах коры имеет место постепенный и равномерный переход между слоями. Клетки всех слоев, расположенные на одном перпендикуляре по отношению к поверхности коры, тесно связаны между собой и с подкорковыми образованиями. Такой комплекс называют колонкой клеток. Каждая такая колонка отвечает за восприятие преимущественно одного вида чувствительности. Напр., одна из колонок коркового представительства зрительного анализатора воспринимает движение предмета в горизонтальной плоскости, соседняя - в вертикальной и т. п.

Аналогичные комплексы клеток новой коры имеют горизонтальную ориентацию. Предполагают, что, напр., мелкоклеточные слон II и IV состоят в основном из воспринимающих клеток и являются «входами» в кору, крупноклеточный слой V - это «выход» из коры в подкорковые структуры, а среднеклеточный слой III - ассоциативный, связывает между собой различные зоны коры.

Т. о., можно выделить несколько типов прямых и обратных связей между клеточными элементами коры и подкорковых образований: вертикальные пучки волокон, несущие информацию из подкорковых структур к коре и обратно; внутрикортикальные (горизонтальные) пучки ассоциативных волокон, проходящие на различных уровнях коры и белого вещества.

Вариабельность и своеобразие строения нейроцитов свидетельствуют о чрезвычайной сложности аппаратов внутрикорковых переключений и способов соединений между нейроцитами. Такую особенность строения К. г. м. следует рассматривать как морфол, эквивалент ее чрезвычайной реактивности и функц, пластичности, обеспечивающих ей высшие нервные функции.

Увеличение массы корковой ткани происходило в ограниченном пространстве черепа, поэтому поверхность коры, гладкая у низших млекопитающих, у высших млекопитающих и человека преобразовалась в извилины и борозды (рис. 1). Именно с развитием коры уже в прошлом столетии ученые связывали такие стороны деятельности мозга, как память (см.), интеллект, сознание (см.), мышление (см.) и т. п.

1870 год И. П. Павлов определил как год, «с которого начинается научная плодотворная работа по изучению больших полушарий». В этом году Фрич и Гитциг (G. Fritsch, E. Hitzig, 1870) показали, что электрическое раздражение определенных участков переднего отдела К. г. м. собак вызывает сокращение определенных групп скелетной мускулатуры. Многие ученые полагали, что при раздражении К. г. м. активируются «центры» произвольных движений и моторной памяти. Однако еще Ч. Шеррингтон предпочитал избегать функц, интерпретации этого явления и ограничивался лишь утверждением, что область коры, раздражение к-рой вызывает сокращение мышечных групп, интимно связана со спинным мозгом.

Направления экспериментальных исследований К. г. м. конца прошлого столетия почти всегда были связаны с проблемами клин, неврологии. На этой основе были начаты опыты с частичной или полной декортикацией головного мозга (см.). Первым полную декортикацию у собаки произвел Гольтц (F. L. Goltz, 1892). Декортицированная собака оказалась жизнеспособной, но у нее были резко нарушены многие важнейшие функции - зрение, слух, ориентация в пространстве, координация движений и др. До открытия И. П. Павловым феномена условного рефлекса (см.) интерпретация опытов как с полными, так и частичными экстирпациями коры страдала отсутствием объективного критерия их оценки. Введение условнорефлекторного метода в практику эксперимента с экстирпациями открыло новую эру в исследованиях структурно-функциональной организации К. г. м.

Одновременно с открытием условного рефлекса возник вопрос и о его материальной структуре. Поскольку первые попытки выработать условный рефлекс у декортицированных собак не удались, И. П. Павлов пришел к выводу, что К. г. м. является «органом» условных рефлексов. Однако дальнейшими исследованиями была показана возможность выработки условных рефлексов у декортицированных животных. Было установлено, что условные рефлексы не нарушаются при вертикальных перерезках различных областей К. г. м. и разобщении их с подкорковыми образованиями. Эти факты наряду с электрофизиологическими данными дали повод рассматривать условный рефлекс как результат становления многоканальной связи между различными корковыми и подкорковыми структурами. Недостатки метода экстирпации для изучения значения К. г. м. в организации поведения побудили к разработке методик обратимого, функционального, выключения коры. Буреш и Бурешова (J. Bures, О. Buresova, 1962) применили феномен так наз. распространяющейся депрессии путем аппликации к тому или иному участку коры хлористого калия или других раздражителей. Поскольку депрессия не распространяется через борозды, этот метод можно использовать только на животных с гладкой поверхностью К. г. м. (крысы, мыши).

Другой путь функц, выключения К. г. м.- ее охлаждение. Метод, разработанный Н. Ю. Беленковым с сотр. (1969), состоит в том, что в соответствии с формой поверхности корковых областей, намечаемых к выключению, изготавливаются капсулы, которые вживляются над твердой мозговой оболочкой; во время эксперимента через капсулу пропускается охлажденная жидкость, вследствие чего температура коркового вещества под капсулой снижается до 22-20°. Отведение биопотенциалов с помощью микроэлектродов показывает, что при такой температуре импульсная активность нейронов прекращается. Метод холодовой декортикации, используемый в хрон, опытах на животных, продемонстрировал эффект экстренного отключения новой коры. Оказалось, что такое отключение прекращает осуществление ранее выработанных условных рефлексов. Т. о., было показано, что К. г. м. представляет собой необходимую структуру для проявления условного рефлекса в интактном мозге. Следовательно, наблюдаемые факты выработки условных рефлексов у хирургически декортицированных животных являются результатом компенсаторных перестроек, происходящих в интервале времени от момента операции до начала исследования животного в хрон, эксперименте. Компенсаторные явления имеют место и в случае функц, выключений новой коры. Так же, как и холодовое выключение, острое выключение новой коры у крыс с помощью распространяющейся депрессии резко нарушает условно-рефлекторную деятельность.

Сравнительная оценка эффектов полной и частичной декортикации у различных видов животных показала, что обезьяны переносят эти операции тяжелее, чем кошки и собаки. Степень нарушения функций при экстирпации одних и тех же зон коры различна у животных, стоящих на разных ступенях эволюционного развития. Напр., удаление височных областей у кошек и собак меньше нарушает функцию слуха, чем у обезьян. Точно так же зрение после удаления затылочной доли коры страдает у обезьян в большей степени, чем у кошек и собак. На основании этих данных возникло представление о кортиколизации функций в процессе эволюции ц. н. с., согласно к-рому филогенетически более ранние звенья нервной системы переходят на более низкий уровень иерархии. При этом К. г. м. пластически перестраивает функционирование этих, филогенетически более старых, структур в соответствии с влиянием окружающей среды.

Корковые проекции афферентных систем К. г. м. представляют собой специализированные конечные станции путей от органов чувств. От К. г. м. к мотонейронам спинного мозга в составе пирамидного тракта идут эфферентные пути. Они берут начало преимущественно от двигательной области коры, к-рая у приматов и человека представлена передней центральной извилиной, расположенной кпереди от центральной борозды. Кзади от центральной борозды расположена соматосенсорная область К. г. м.- задняя центральная извилина. Отдельные участки скелетной мускулатуры корти-колизированы в различной степени. Наименее дифференцированно в передней центральной извилине представлены нижние конечности и туловище, большую площадь занимает представительство мышц кисти. Еще более обширная область соответствует мускулатуре лица, языка и гортани. В задней центральной извилине в таком же соотношении, как и в передней центральной извилине, представлены афферентные проекции частей тела. Можно сказать, что организм как бы спроецирован в эти извилины в виде абстрактного «гомункулюса», который характеризуется чрезвычайным перевесом в пользу передних сегментов тела (рис. 2 и 3).

Помимо этого, в состав коры входят ассоциативные, или неспецифические, области, получающие информацию от рецепторов, воспринимающих раздражения различной модальности, и от всех проекционных зон. Филогенетическое развитие К. г. м. характеризуется прежде всего ростом ассоциативных зон (рис. 4) и обособлением их от проекционных. У низших млекопитающих (грызунов) почти вся кора состоит из одних только проекционных зон, выполняющих одновременно и ассоциативные функции. У человека проекционные зоны занимают лишь небольшую часть коры; все остальное отведено под ассоциативные зоны. Предполагают, что ассоциативные зоны играют особо важную роль в осуществлении сложных форм в. н. д.

У приматов и человека наибольшего развития достигает лобная (префронтальная) область. Это филогенетически самая молодая структура, имеющая непосредственное отношение к самым высшим психическим функциям. Однако попытки спроецировать эти функции на отдельные участки лобной коры не имеют успеха. Очевидно, любая часть лобной коры может включаться в осуществление любой из функций. Эффекты, наблюдаемые при разрушении различных участков этой области, относительно кратковременны или часто совсем отсутствуют (см. Лобэктомия).

Приуроченность отдельных структур К. г. м. к определенным функциям, рассматриваемая как проблема локализации функций, остается до сих пор одной из самых трудных проблем неврологии. Отмечая, что у животных после удаления классических проекционных зон (слуховых, зрительных) условные рефлексы на соответствующие раздражители частично сохраняются, И. П. Павлов высказал гипотезу о существовании «ядра» анализатора и его элементов, «рассеянных» по всей К. г. м. С помощью микроэлектродные методы исследования (см.) удалось зарегистрировать в различных областях К. г. м. активность специфических нейроцитов, отвечающих на стимулы определенной сенсорной модальности. Поверхностное отведение биоэлектрических потенциалов выявляет распределение первичных вызванных потенциалов на значительных площадях К. г. м.- за пределами соответствующих проекционных зон и цитоархитектонических полей. Эти факты наряду с поли-функциональностью нарушений при удалении любой сенсорной области или ее обратимом выключении указывают на множественное представительство функций в К. г. м. Двигательные функции также распределены на значительных площадях К. г. м. Так, нейроциты, отростки которых формируют пирамидный тракт, расположены не только в моторных областях, но и за их пределами. Помимо сенсорных и моторных клеток, в К. г. м. имеются еще и промежуточные клетки, или интернейроциты, составляющие основную массу К. г. м. и сосредоточенные гл. обр. в ассоциативных областях. На интернейроциты конвергируют разномодальные возбуждения.

Экспериментальные данные указывают, т. о., на относительность локализации функций в К. г. м., на отсутствие корковых «центров», зарезервированных под ту или иную функцию. Наименее дифференцированными в функц, отношении являются ассоциативные области, обладающие особо выраженными свойствами пластичности и взаимозамещаемости. Из этого, однако, не вытекает, что ассоциативные области эквипотенциальны. Принцип эквипотенциальности коры (равнозначности ее структур), высказанный Лешли (К. S. Lashley) в 1933 г. на основании результатов экстирпаций мало-дифференцированной коры крысы, в целом не может распространяться на организацию кортикальной активности у высших животных и человека. Принципу эквипотенциальности И. П. Павлов противопоставил концепцию о динамической локализации функций в К. г. м.

Решение проблемы структурно-функциональной организации К. г. м. во многом затрудняется отождествлением локализации симптомов экстирпаций и стимуляций определенных корковых зон с локализацией функций К. г. м. Этот вопрос касается уже методологических аспектов нейрофизиол, эксперимента, т. к. с диалектической точки зрения любая структурно-функциональная единица в том виде, в каком она выступает в каждом данном исследовании, представляет собой фрагмент, одну из сторон существования целого, продукт интеграции структур и связей мозга. Напр., положение о том, что функция моторной речи «локализуется» в нижней лобной извилине левого полушария, основано на результатах повреждения этой структуры. В то же время электрическая стимуляция этого «центра» речи никогда не вызывает акта артикуляции. Оказывается, однако, что произнесение целых фраз можно вызвать стимуляцией рострального таламуса, посылающего афферентные импульсы в левое полушарие. Фразы, вызванные такой стимуляцией, не имеют ничего общего с произвольной речью и не адекватны ситуации. Этот высоко-интегрированный эффект стимуляции свидетельствует о том, что восходящие афферентные импульсы трансформируются в нейрональный код, эффективный для высшего координационного механизма моторной речи. Точно так же сложнокоординированные движения, обусловленные раздражением моторной области коры, организуются не теми структурами, которые непосредственно подвергаются раздражению, а соседними или спинальными и экстрапирамидными системами, возбуждаемыми по нисходящим путям. Эти данные показывают, что между корой и подкорковыми образованиями имеется тесная связь. Поэтому нельзя противопоставлять кортикальные механизмы работе подкорковых структур, а надо рассматривать конкретные случаи их взаимодействия.

При электрической стимуляции отдельных корковых областей изменяется деятельность сердечно-сосудистой системы, дыхательного аппарата, жел.-киш. тракта и других висцеральных систем. Влияния К. г. м. на внутренние органы К. М. Быков обосновывал также возможностью образования висцеральных условных рефлексов, что наряду с вегетативными сдвигами при различных эмоциях было положено им в основу концепции существования кортико-висцеральных отношений. Проблема кортико-висцеральных отношений решается в плане изучения модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внутренней среды организма.

Существенную роль играют связи К. г. м. с гипоталамусом (см.).

Уровень активности К. г. м. в основном определяется восходящими влияниями от ретикулярной формации (см.) ствола мозга, к-рую контролируют кортико-фугальные влияния. Эффект последних имеет динамический характер и является следствием текущего афферентного синтеза (см.). Исследования с помощью электроэнцефалографии (см.), в частности кортикографии (т. е. отведения биопотенциалов непосредственно от К. г. м.), казалось бы подтвердили гипотезу о замыкании временной связи между очагами возбуждений, возникающих в кортикальных проекциях сигнального и безусловного раздражителей в процессе образования условного рефлекса. Однако оказалось, что по мере упрочения поведенческих проявлений условного рефлекса электрографические признаки условной связи исчезают. Этот кризис методики электроэнцефалографии в познании механизма условного рефлекса был преодолен в исследованиях М. Н. Ливанова с сотр. (1972). Ими показано, что распространение возбуждения по К. г. м. и проявление условного рефлекса зависит от уровня дистантной синхронизации биопотенциалов, отводимых от пространственно удаленных пунктов К. г. м. Повышение уровня пространственной синхронизации наблюдается при умственном напряжении (рис. 5). В этом состоянии участки синхронизации не сконцентрированы в определенных зонах коры, а распределены по всей ее площади. Корреляционные отношения охватывают пункты всей лобной коры, но вместе с тем повышенная синхронность регистрируется и в предцентральной извилине, в теменной области и в других участках К. г. м.

Головной мозг состоит из двух симметричных частей (полушарий), связанных между собой комиссурами, состоящими из нервных волокон. Оба полушария головного мозга объединяются самой большой комиссурой - мозолистым телом (см.). Его волокна связывают идентичные пункты К. г. м. Мозолистое тело обеспечивает единство функционирования обоих полушарий. При его перерезке каждое полушарие начинает функционировать независимо одно от другого.

В процессе эволюции мозг человека приобрел свойство латерализации, или асимметрии (см.). Каждое его полушарие специализировалось для выполнения определенных функций. У большинства людей доминирующим является левое полушарие, обеспечивающее функцию речи и контроль за действием правой руки. Правое полушарие специализировано для восприятия формы и пространства. Вместе с тем функц, дифференциация полушарий не абсолютна. Тем не менее обширные повреждения левой височной доли сопровождаются, как правило, сенсорными и моторными нарушениями речи. Очевидно, что в основе латерализации лежат врожденные механизмы. Однако потенциальные возможности правого полушария в организации функции речи способны проявляться при повреждении левого полушария у новорожденных.

Имеются основания рассматривать латерализацию как адаптивный механизм, развившийся вследствие усложнения функций головного мозга на высшем этапе его развития. Латерализация препятствует интерференции различных интегративных механизмов во времени. Возможно, что кортикальная специализация противодействует несовместимости различных функциональных систем (см.), облегчает принятие решения о цели и способе действия. Интегративная деятельность мозга не исчерпывается, т. о., внешней (суммативной) целостностью, понимаемой как взаимодействие активностей независимых элементов (будь то нейроциты или целые образования мозга). На примере развития латерализации можно видеть, как сама эта целостная, интегративная деятельность мозга становится предпосылкой дифференциации свойств ее отдельных элементов, наделяет их функц, спецификой. Следовательно, функц, вклад каждой отдельной структуры К. г. м. в принципе нельзя оценить в отрыве от динамики интегративных свойств целостного мозга.

Патология

Кора головного мозга редко поражается изолированно. Признаки ее поражения в большей или меньшей степени обычно сопутствуют патологии головного мозга (см.) и входят в состав ее симптомов. Обычно патол, процессами поражается не только К. г. м., но и белое вещество полушарий. Поэтому под патологией К. г. м. обычно понимают ее преимущественное поражение (диффузное или локальное, без строгой границы между этими понятиями). Наиболее обширное и интенсивное поражение К. г. м. сопровождается исчезновением психической активности, комплексом как диффузных, так и локальных симптомов (см. Апаллический синдром). Наряду с неврол, симптомами поражения двигательной и чувствительной сферы, симптомами поражения различных анализаторов у детей является задержка развития речи и даже полная невозможность становления психики. В К. г. м. при этом наблюдаются изменения цитоархитектоники в виде нарушения слоистости, вплоть до полного ее исчезновения, очаги выпадения нейроцитов с замещением их разрастаниями глии, гетеротопия нейроцитов, патология синаптического аппарата и другие патоморфол, изменения. Поражения К. г. м. наблюдаются при различных врожденных аномалиях мозга в виде анэнцефалии, микрогирии, микроцефалии, при различных формах олигофрении (см.), а также при самых различных инфекциях и интоксикациях с поражением нервной системы, при черепно-мозговых травмах, при наследственных и дегенеративных заболеваниях мозга, нарушениях мозгового кровообращения и т. д.

Изучение ЭЭГ при локализации патол, очага в К. г. м. чаще выявляет преобладание очаговых медленных волн, которые рассматриваются как коррелят охранительного торможения (У. Уолтер, 1966). Слабая выраженность медленных волн в области патол, очага является полезным диагностическим признаком в предоперационной оценке состояния больных. Как показали исследования Н. П. Бехтеревой (1974), проведенные совместно с нейрохирургами, отсутствие медленных волн в области патол, очага является неблагоприятным прогностическим признаком последствий хирургического вмешательства. Для оценки патол, состояния К. г. м. используется также тест на взаимодействие ЭЭГ в зоне очагового поражения с вызванной активностью в ответ на положительные и дифференцировочные условные раздражители. Биоэлектрическим эффектом такого взаимодействия может быть как усиление очаговых медленных волн, так и ослабление их выраженности или усиление частых колебаний типа заостренных бета-волн.

Библиография: Анохин П. К. Биология и нейрофизиология условного рефлекса, М., 1968, библиогр.; Беленков Н. Ю. Фактор структурной интеграции в деятельности мозга, Усп. физиол, наук, т. 6, в. 1, с. 3, 1975, библиогр.; Бехтерева Н. П. Нейрофизиологические аспекты психической деятельности человека, Л., 1974; Грей Уолтер, Живой мозг, пер. с англ., М., 1966; Ливанов М. Н. Пространственная организация процессов головного мозга, М., 1972, библиогр.; Лурия А. Р. Высшие корковые функции человека и их нарушения при локальных поражениях мозга, М., 1969, библиогр.; Павлов И. П. Полное собрание сочинений, т. 3-4, М.-Л., 1951; Пенфильд В. и Робертс Л. Речь и мозговые механизмы, пер. с англ., Л., 1964, библиогр.; Поляков Г. И. Основы систематики нейронов новой коры большого мозга человека, М., 1973, библиогр.; Цитоархитектоника коры большого мозга человека, под ред. С. А. Саркисова и др., с. 187, 203, М., 1949; Шаде Дж. и Форд Д. Основы неврологии, пер. с англ., с. 284, М., 1976; M a s t e г t о n R. B. a. B e r k 1 e y M. A. Brain function, Ann. Rev. Psychol., у. 25, p. 277, 1974, bibliogr.; S h о 1 1 D. A. The organization of cerebral cortex, L.-N. Y., 1956, bibliogr.; Sperry R. W. Hemisphere deconnection and unity in conscious awareness, Amer. Psychol., v. 23, p. 723, 1968.

H. Ю. Беленков.





error: Контент защищен !!