Строение ацетилхолина. Ацетилхолин - это медиатор нервного возбуждения. Ацетилхолин: особенности, препараты, свойства

Ацетилхолин (лат. Acetylcholinum ) — нейромедиатор, осуществляющий нервно-мышечную передачу, а также основной нейромедиатор в парасимпатической нервной системе.

Список симптомов повышенного ацетилхолина:

  • Подавленное настроение
  • Ангедония
  • Проблемы с концентрацией внимания
  • Проблемы с мышлением
  • Ментальная усталость
  • Проблемы с памятью
  • Низкая мотивация
  • Невозможность выспаться
  • Проблемы с пониманием и выполнением сложных задач
  • Пессимизм
  • Чувство безнадежности и беспомощности
  • Раздражительность
  • Слезливость
  • Проблемы со зрением
  • Головные боли
  • Сухость во рту
  • Боли в животе
  • Вздутие живота
  • Диарея или запор
  • Тошнота
  • Мышечная боль
  • Мышечная слабость
  • Зубная или челюстная боль
  • Покалывание или онемение рук или ног
  • Учащенное мочеиспускание или проблемы с контролем мочевого пузыря
  • Симптомы, схожие с гриппом или простудой
  • Слабый иммунитет
  • Холодные руки и ноги
  • Проблемы со сном
  • Тревога
  • Яркие сны, в основном кошмары
  • Пониженный уровень серотонина, дофамина и норадреналина в мозге

Между серотонином и ацетилхолином существует обратная антагонистичная связь. Когда уровень одного из этих нейромедиаторов повышается, уровень другого понижается. Определенное количество ацетилхолина необходимо для нормального функционирования головного мозга. Память, мотивация, сексуальное желание и сон зависят от ацетилхолина. В малых количествах ацетилхолин действует как стимулятор выброса дофамина и норадреналина. Слишком высокий уровень ацетилхолина дает противоположный эффект, вызывая торможение центральной нервной системы. В итоге можно сказать, что когда в мозге повышается уровень ацетилхолина, то понижаются уровни других нейромедиаторов, таких как серотонин, дофамин и норадреналин.

Что касается настроения, то комбинация повышенного ацетилхолина и норадреналина, вместе с низким серотонином дает в результате тревогу, эмоциональную лабильность, раздражительность, пессимизм, нетерпеливость, импульсивность и многое другое. Когда норадреналин, дофамин и серотонин на низком уровне, а ацетилхолин на высоком — в результате получаем депрессию. Антидепрессанты типа СИОЗС, увеличивая серотонин, способны понижать уровень ацетилхолина, тем самым уменьшать или устранять симптомы, связанные с повышенным ацетилхолином. Однако, основным недостатком в данном подходе является то, что увеличивая уровень серотонина мы уменьшаем уровень дофамина и норадреналина в мозге. Поэтому длительное употребление СИОЗС, в конце концов, приведет к завышенному уровню серотонина, а это ещё одна разновидность депрессии. Именно по этой причине СИОЗС помогают далеко не всем людям, а у некоторых ухудшают депрессию и вызывают неприятные побочные симптомы. Так что, несмотря на популярность и распространенность использования, СИОЗС антидепрессанты являются не лучшим выбором в данной ситуации.

Уровень ацетилхолина в мозге напрямую зависит от количества холина в диете. Но есть и другие причины, не зависящие от потребляемой пищи. Пища богатая холином:

  • Куриные яйца
  • Соевые продукты
  • Все, что содержит лецитин

Некоторые люди более чувствительны к холину, поэтому даже небольшое количество потребляемого холина может вызвать у них соответствующие симптомы. Также чувствительность к холину увеличивается с возрастом.


По материалам: DIFERENT

Если вы обнаружили ошибку на этой странице, выделите ее и нажмите Ctrl+Enter.

Ацетилхолин - это передатчик нервного возбуждения в ЦНС, окончаниях парасимпатических нервов и Он выполняет важнейшие задачи в процессах жизнедеятельности. Аналогичными функциями обладают аминокислоты, гистамин, дофамин, серотонин, адреналин. Ацетилхолин считается одним из важнейших передатчиков импульсов в мозг. Рассмотрим это вещество подробнее.

Общие сведения

Окончания волокон, от которых медиатор ацетилхолин осуществляет передачу, именуются холинергическими. Кроме этого, существуют специальные элементы, с которыми он взаимодействует. Они называются холинорецепторами. Эти элементы представляют собой сложные молекулы белка - нуклеопротеиды. Рецепторы ацетилхолина отличаются тетрамерной структурой. Они локализуются на внешней поверхности плазматической (постсинаптической) мембраны. По своей природе эти молекулы неоднородны.

В экспериментальных исследованиях и в медицинских целях используется препарат "Ацетилхолин-хлорид", представленный в растворе для инъекций. Другие лекарственные средства на основе этого вещества не выпускаются. Существуют синонимы препарата: "Миохол", "Ацеколин", "Цитохолин".

Классификация холиновых белков

Некоторые молекулы находятся в районе холинергических постганглионарных нервов. Это область гладкой мускулатуры, сердца, желез. Они называются м-холинорецепторами - мускариночувствительными. Другие белки расположены в районе ганглионарных синапсов и в нервно-мышечных соматических структурах. Они именуются н-холинорецепторами - никотиночувствительными.

Пояснения

Приведенная выше классификация обуславливается спецификой реакций, которые возникают, когда взаимодействуют эти биохимические системы и ацетилхолин. Это , в свою очередь, объясняет причины некоторых процессов. Например, снижение давления, усиленную секрецию желудочных, слюнных и прочих желез, брадикардию, сужение зрачков и пр. при влиянии на мускариночувствительные белки и сокращение скелетных мышц и пр. при воздействии на никотиночувствительные молекулы. При этом в последнее время ученые начали разделять м-холинорецепторы на подгруппы. Наиболее изучена сегодня роль и локализация м1- и м2-молекул.

Специфика влияния

Ацетилхолин - это не избирательный элемент системы. В той или иной степени он воздействует и на м-, и на н-молекулы. Интерес представляет мускариноподобное влияние, которое оказывает ацетилхолин. Это воздействие проявляется в замедлении сердечного ритма, расширении кровеносных сосудов (периферических), активизации перистальтики кишечника и желудка, сокращении мышц матки, бронхов, мочевого, желчного пузыря, интенсификации секреции бронхиальных, потовых, пищеварительных желез, миозе.

Сужение зрачка

Круговая мышца радужной оболочки, иннервируемая постганглионарными волокнами в начинает усиленно сокращаться одновременно с ресничной. При этом имеет место расслабление цинновой связки. В результате возникает спазм аккомодации. Сужение зрачка, связанное с влиянием ацетилхолина, как правило, сопровождается понижением внутриглазного давления. Данный эффект частично обуславливается расширением оболочки в шлеммовом канале и фонтановых пространств на фоне миоза и уплощения радужной оболочки. Это способствует улучшению оттока жидкости из внутренних глазных сред.

Благодаря возможности понижать внутриглазное давление, как ацетилхолин, препараты на основе других подобных ему веществ используются при лечении глаукомы. К ним, в частности, относят холиномиметики.

Никотиночувствительные белки

Никотиноподобное действие ацетилхолина обуславливается его участием в процессе передачи сигналов с преганглионарных нервных волокон на постганглионарные, находящиеся в вегетативных узлах, и с двигательных окончаний на поперечнополосатые мышцы. В малых дозах вещество выступает в качестве физиологического передатчика возбуждения. Если , то может развиться стойкая деполяризация в районе синапсов. Также существует вероятность блокирования передачи возбуждения.

ЦНС

Ацетилхолин в организме играет роль передатчика сигналов в различных мозговых отделах. В малой концентрации он может облегчать, а в большой - замедлять синаптическую трансляцию импульсов. Изменения обмена вещества могут способствовать развитию мозговых нарушений. Антагонисты, которым противопоставляется ацетилхолин, - препараты психотропной группы. При их передозировке может возникнуть нарушение высших нервных функций (галлюциногенный эффект и пр.).

Синтез ацетилхолина

Он происходит в цитоплазме в нервных окончаниях. Запасы вещества располагаются в пресинаптических терминалях в виде пузырьков. Возникновение приводит к высвобождению ацетилхолина из нескольких сотен "капсул" в синаптическую щель. Вещество, выделяющееся из пузырьков, связывается на постсинаптической мембране со специфическими молекулами. Это повышает ее проницаемость для натриевых, кальциевых и калиевых ионов. В результате возникает возбуждающий постсинаптический потенциал. Влияние ацетилхолина ограничивается посредством его гидролиза с участием фермента ацетилхолиэстеразы.

Физиология никотиновых молекул

Первому описанию способствовал внутриклеточный отвод электрических потенциалов. Никотиновый рецептор стал одним из первых, на который удалось записать токи, пропускаемые через единичный канал. В открытом состоянии сквозь него могут проходить ионы К+ и Na+, в меньшей степени двухвалентные катионы. При этом проводимость канала выражена в постоянной величине. Продолжительность открытого состояния, тем не менее, выступает характеристикой, зависящей от напряжения потенциала, приложенного к рецептору. При этом последний стабилизируется при переходе от деполяризации мембраны к гиперполяризации. Кроме этого, отмечается явление десенсетизации. Оно возникает при продолжительной аппликации ацетилхолина и прочих антагонистов, снижающей чувствительность рецептора и увеличивающей длительность открытого состояния канала.

Электрическое раздражение

Дигидро-β-эритроидин блокирует никотиновые рецепторы головного мозга и нервных ганглий при проявлении ими холинергического ответа. Для них также характерно высокоафинное сродство с тритий-меченным никотином. Чувствительные нейронные рецепторы αBGT в гиппокампе отличаются низкой восприимчивостью ацетилхолина, в отличие от нечувствительных αBGT-элементов. Оборотным и селективным конкурентным антагонистом первых выступает метилликаконитин.

Отдельные производные анабезиина провоцируют селективное активационное воздействие на группу αBGT-рецепторов. Проводимость их ионного канала достаточно высока. Эти рецепторы отличаются уникальными вольт-зависимыми характеристиками. Общеклеточный ток при участии деполяризационных величин эл. потенциала указывает на уменьшение пропуска ионов через каналы.

Данное явление при этом регулируется содержанием в растворе элементов Mg2+. Этим данная группа отличается от рецепторов мышечных клеток. Последние не претерпевают каких-либо изменений тока ионов при корректировке величин мембранного потенциала. При этом а N-метил-D-аспартатный рецептор, обладающий относительной проницаемостью для элементов Са2+, показывает обратную картину. При увеличении потенциала до гиперполяризующих значений и повышении содержания ионов Mg2+ ионный ток блокируется.

Особенности мускариновых молекул

М-холинорецепторы относятся к классу серпентивных. Они передают импульсы через гетеротримерные G-протеины. Группа мускариновых рецепторов была выявлена благодаря их свойству связывать алкалоид мускарин. Опосредованно эти молекулы были описаны в начале 20-го столетия при изучении эффектов кураре. Непосредственное исследование этой группы началось в 20-30 гг. того же века после идентификации соединения ацетилхолина как нейромедиатора, поставляющего импульс в нервно-мышечные синапсы. М-белки активизируются под влиянием мускарина и блокируются атропином, н-молекулы активируются под воздействием никотина и блокируются кураре.

Спустя время в обеих группах рецепторов было выявлено большое количество подтипов. В нервно-мышечных синапсах присутствуют только никотиновые молекулы. Мускариновые рецепторы обнаруживаются в клетках желез и мускулатуры, а также - вместе с н-холинорецепторами - в нейронах ЦНС и нервных ганглиях.

Функции

Мускариновые рецепторы обладают целым комплексом различных свойств. В первую очередь они располагаются в автономных ганглиях и отходящих от них постганглиозных волокнах, направленных к органам-мишеням. Это указывает на участие рецепторов в трансляции и модуляции парасимпатических эффектов. К ним, например, относят сокращение гладких мышц, расширение сосудов, усиление секреции желез, снижение частоты сокращений сердца. Холинергические волокна ЦНС, в составе которых присутствуют интернейроны и мускариновые синапсы, сконцентрированы преимущественно в коре мозга, гиппокампе, ядрах ствола, стриатуме. В других участках они обнаруживаются в меньшем количестве. Центральные м-холинорецепторы влияют на регуляцию сна, памяти, обучения, внимания.


Ацетилхолин осуществляет передачу нервных импульсов в холинергических синапсах. Открытие медиаторной роли ацетилхолина принадлежит австрийскому фармакологу О. Леви (Loewi). Холинергические синапсы имеются как в соматической, так и вегетативной нервной системе. Двигательные волокна соматической нервной системы иннервируют скелетные мышцы, и с их окончаний выделяется ацетилхолин. Эфферентные проводящие пути вегетативной нервной системы состоят из двух нейронов: первый расположен в центральной нервной системе (в стволе головного мозга и спинном мозге), второй - в вегетативном ганглии, который относится к периферической нервной системе (рис. 5). Соответственно отростки первых нейронов формируют преганглионарные волокна, вторых - постганглионарные. В преганглионарных нейронах и симпатического, и парасимпатического отделов вегетативной нервной системы основным медиатором служит ацетилхолин. Различаются же симпатический и парасимпатический отделы по медиатору, высвобождающемуся в синапсах постганглионарного волокна: в симпатической нервной системе это норадреналин, в парасимпатической - ацетилхолин.
Таким образом, ацетилхолин служит передатчиком импульсов с окончаний всех парасимпатических постганглионарных волокон, с окончаний постганглионарных симпатических волокон, иннервирующих потовые железы, с окончаний всех (как симпатических, так и парасимпатических) преганглионарных волокон, с окончаний двигательных нервов поперечно-полосатых мышц, а также во многих центральных синапсах.

Химически ацетилхолин представляет собой сложный эфир холина и уксусной кислоты. Его синтез проходит в окончаниях нервных волокон из спирта холина и ацетил-КоА под влиянием фермента холинацетилтрансферазы. Скорость реакции синтеза лимитируется концентрацией холина в синаптических окончаниях. Синтезированный медиатор депонируется в везикулах в результате активного транспорта с участием фермента - Mg^-зависимая АТФаза. Основным механизмом выделения ацетилхолина в синаптическую щель, в результате чего формируется постсинаптический потенциал, служит Са2+-зависимый экзоцитоз. Деполяризация нервного окончания, которая увеличивает проницаемость пресинаптической мембраны для Са2+, - необходимое условие выделения ацетилхолина.
Ацетилхолин химически нестоек, в щелочной среде быстро распадается на холин и уксусную кислоту. Разрушение его в холинергическом синапсе катализируется ферментом ацетилхолинэстера- зой, открытым О. Леви. Ацетилхолинэстераза находится на постсинаптической мембране рядом с холинорецептором и является одним из самых быстродействующих ферментов. Быстрое разрушение медиатора обеспечивает лабильность холинергической нервной передачи. Образовавшийся холин захватывается белками-транспортерами пресинаптической мембраны и служит далее для восстановления ацетилхолина в терминали (рис. 6).

/>Рис. 6. Схема строения холинергического синапса (цит. по: Маркова И. Н., Неженцева М. Н., 1997):
АХ - ацетилхолин; ХР - холинорецептор; М - мускариновый холинорецептор; Н - никотиновый холинорецептор; АХЭ - ацетилхолинэстераза; ТМ - транспортный механизм; ХА - холинацетилтрансфераза; (+) - активация; (-) - торможение

Действие ацетилхолина на мембрану состоит в его реакции с хо- линорецепторами, входящими в структуру клеточной мембраны (рис. 7). Так, реакция ацетилхолина с Н-холинорецептором вызывает изменение пространственного расположения атомов белковой молекулы рецептора. В результате увеличивается размер межмоле- кулярных пор мембраны, образуя свободный проход для ионов Na+, а затем и К+, и происходит деполяризация клеточной мембраны с последующей реполяризацией. Вызываемые ацетилхолином изменения молекулы рецептора легко обратимы. После передачи импульса уже приблизительно через 1 мс заканчивается деполяризация и восстанавливается обычная проницаемость мембраны. К этому времени холинорецептор уже свободен от связи с ацетилхолином.
Полагают, что вызываемая ацетилхолином деформация молекулы рецептора приводит не только к увеличению межмолекулярных пор мембраны, но и способствует отторжению ацетилхолина от рецептора. Отторжение это необходимо для взаимодействия освобождающего ацетилхолина с ацетилхолинэстеразой и его последующего разрушения (см. рис. 7).
Вещества, влияющие на холинорецепторы, способны вызывать стимулирующий (холиномиметический) или угнетающий (холинолитический) эффект.

о.
C-0-CH2CH2-N(CH3)3


/ C-0-CH2CH2-N(CH3)3
сн3
Рис. 7. Схема взаимодействия ацетилхолина с холинорецептором
и ацетилхолинэстеразой (цит. по: Закусов В. В., 1973):
ХР - холинорецептор; АХЭ - ацетилхолинэстераза; А - анодный центр ХР и АХЭ; Э - эстеразный центр АХЭ и эстерофильный центр ХР
Фармакологические вещества могут воздействовать на следующие этапы синаптической передачи холинергических синапсов: синтез ацетилхолина; 2) процесс высвобождения медиатора; 3) взаимодействие ацетилхолина с холинорецепторами; 4) разрушение ацетилхолина; 5) захват пресинаптическим окончанием холина, образующегося при разрушении ацетилхолина. Например, на уровне пресинаптических окончаний действует ботулиновый токсин, препятствующий высвобождению медиатора. Транспорт холина через пресинаптическую мембрану (нейрональный захват) угнетается гемихолином. Непосредственное влияние на холинорецепторы оказывают холиномиметики (пилокарпин, цитизин) и холинолитики (М- холиноблокаторы, ганглиоблокаторы и периферические миорелак- санты). Для угнетения фермента ацетилхолинэстеразы могут быть использованы антихолинэстеразные средства (прозерин).

Ацетилхолин хлорид - это препарат из группы м- и н-холиномиметиков, он оказывает стимулирующее воздействие на м- и н-холинорецепторы.

Какое у Ацетилхолин хлорид действие?

М-холиномиметическое действие проявится брадикардией, повысится тонус, а также и сократительная активность мышц бронхов, мочевого пузыря, желудочно-кишечного тракта, а также цилиарной мышцы глаза. Помимо этого усилится секреция слюнных, слезных желез, бронхов, желудка, кишечника. Сфинктеры мочевого пузыря и ЖКТ будут расслабляться под воздействием этого препарата.

Н-холиномиметическое действие препарата Ацетилхолин хлорид связано с участием вещества ацетилхолина в передаче нервных импульсов на постганглионарные вегетативные узлы и на поперечно-полосатую мускулатуру. В небольших дозах это средство считается передатчиком нервного возбуждения, а в больших - приводит к стойкой деполяризации в области синапсов, что приводит к блокированию передачи возбуждения.

Препарат Ацетилхолин хлорид принимает участие непосредственно в передаче нервного импульса во многих отделах мозга, при этом в больших концентрациях он тормозит синаптическую передачу, а в малых - облегчает.

Какие у Ацетилхолин хлорид показания к применению?

Перечислю некоторые состояния, при наличии которых показано использовать лекарство Ацетилхолин хлорид:

Наличие у пациента эндартериита;
При перемежающей хромоте тоже применяют этот лекарственный препарат;
Показано его использование и при трофических расстройствах в культях;
Средство оказывается эффективным и при наличии спазмов артерий сетчатки;
Применяют его при атонии кишечника, а также и при пониженном тонусе мочевого пузыря.

Кроме этого средство Ацетилхолин хлорид используют для облегчения рентгенологического исследования при наличии такого патологического процесса, как ахалазия пищевода.

Какие у препарата Ацетилхолин хлорид противопоказания к применению?

Среди противопоказаний Ацетилхолин хлорид инструкция по применению приводит следующие состояния:

Нельзя использовать это средство при бронхиальной астме;
При наличии стенокардии Ацетилхолин хлорид тоже противопоказан;
Не используют его при выраженных атеросклеротических процессах в организме человека;
Не назначают препарат при эпилепсии;
При лактации;
При кровотечении из пищеварительного тракта;
При гиперкинезах;
Противопоказано его использование во всех триместрах при беременности.

Если у пациента есть какие-либо воспалительные процессы, локализующиеся в брюшной полости до хирургического вмешательства, в этом случае Ацетилхолин тоже противопоказан.

Какие у средства Ацетилхолин хлорид применение и дозировка?

Применяют этот препарат парентеральным способом, а именно, его вводят подкожным или внутримышечным способом, при этом дозировка может составлять 50-100 мг, кратность применения не должна превышать трех раз на протяжении суток. Максимальные дозы Ацетилхолин хлорид следующие: разовая - 100 мг, а суточное количество не более 300 мг.

При одновременном использовании с антихолинэстеразными средствами холиномиметическое действие Ацетилхолина хлорида заметно усиливается.

При совместном применении м-холиноблокаторов, нейролептиков (клозапин, фенотиазин, хлорпротиксен), а также трициклических антидепрессантов уменьшается эффект Ацетилхолина хлорида. Следует отметить, что этот препарат не используют в период грудного вскармливания, равно как и во время беременности.

Какие у лекарства Ацетилхолин хлорид побочные действия?

При использовании Ацетилхолин хлорид не исключено проявление побочных действий, к примеру, со стороны пищеварительной системы может быть тошнота, рвота, пациент будет жаловаться на болезненность в животе, кроме этого присоединяется жидкий стул, отмечаются признаки саливации.

Со стороны сердечно-сосудистой системы также могут проявиться побочные действия, в частности появится брадикардия, кроме этого пациент может жаловаться на пониженное кровяное давление.

Могут отмечаться и прочие побочные эффекты, они проявятся повышенным потоотделением, присоединиться ринорея, не исключен бронхоспазм, кроме этого человек может ощущать учащенное мочеиспускание.

Со стороны нервной системы отмечается головная боль, помимо этого нарушается аккомодация, присоединяется слезотечение. При явном проявлении побочных эффектов рекомендуется проконсультироваться с лечащим врачом.

Особые указания

В настоящее время использование Ацетилхолина хлорида ограничено в плане системного применения, но он включен в состав комбинированных препаратов для местного использования в офтальмологической хирургии, с целью создания быстрого сужения зрачка так называемого миоза.

Препараты, содержащие Ацетилхолин хлорид (аналоги)

Ацетилхолин хлорид содержится в одноименном препарате, он производится в лекарственной форме, которая представлена мелкодисперсным порошком, из него необходимо готовить лекарственный раствор, который предназначен для внутримышечного введения, а также и для подкожных инъекций. Использовать его необходимо до срока годности, указанного на упаковке.

Часто этот препарат используют в офтальмологии, к примеру, при оперативном вмешательстве на передней камере глаза, в частности, для удаления имеющейся катаракты, для иридоэктомии, а также для кератопластики. В результате применения Ацетилхолин хлорида на некоторое время обеспечивается сужение зрачка.

Заключение

Перед использованием препарата необходимо провести консультацию с лечащим доктором.

Ацетилхолин - не самое знаменитое вещество, но он играет важную роль в таких процессах, как память и обучение. Давайте приоткроем завесу тайны над одним из самых недооцененных нейромедиаторов нашей нервной системы.

Первый среди равных

Рисунок 1. Классический опыт Отто Лёви по выявлению химических посредников передачи нервных импульсов (1921 год). Объекты - изолированные и погруженные в солевой раствор сердцá двух лягушек (донора и реципиента). Описание приведено в тексте. Рисунок с сайта en.wikipedia.org , адаптирован .

В научно-популярной литературе медицинской и нейрофизиологической направленности чаще всего речь заходит о трех нейромедиаторах : дофамине , серотонине и норадреналине . Во многом это объясняется тем, что нормальные и болезненные состояния, связанные с изменением уровня этих нейротрансмиттеров, доступнее для понимания и вызывают больше интереса у читателей. Об этих веществах я уже писал, теперь настало время уделить внимание еще одному медиатору.

Речь пойдет об ацетилхолине , и это будет символично, учитывая, что он был первым открытым нейромедиатором. В начале XX века между учеными велся спор, каким способом передается сигнал от одной нервной клетки на другую. Одни считали, что электрический заряд, пробежав по одному нервному волокну, передается на другое по каким-то более тонким «проводам». Их оппоненты утверждали, что существуют вещества, которые переносят сигнал от одной нервной клетки к другой. В принципе, обе стороны оказались правы: существуют химические и электрические синапсы . Однако сторонники второй гипотезы оказались «правее» - химические синапсы преобладают в организме человека .

Чтобы разобраться в особенностях передачи сигнала от одной клетки к другой, физиолог Отто Лёви проводил простые, но изящные опыты (рис. 1). Он стимулировал электрическим током блуждающий нерв лягушки, что приводило к уменьшению частоты сердечных сокращений*. Затем жидкость, находящуюся вокруг этого сердца, Лёви собирал и наносил на сердце другой лягушки - и оно тоже замедлялось. Это доказывало существование некоего вещества, передающего сигнал от одних нервных клеток другим. Загадочное вещество Лёви назвал vagusstoff («вещество блуждающего нерва»). Сейчас мы знаем его под названием ацетилхолин. Вопросом химической синаптической передачи занимался и британец Генри Дейл , который обнаружил ацетилхолин еще раньше Лёви. В 1936 году оба ученых получили Нобелевскую премию по физиологии и медицине «за открытия, связанные с химической передачей нервных импульсов».

* - О том, как сокращается наше сердце - об автоматизме, дирижирующих пейсмейкерах и даже смешных каналах, - читайте в обзоре « » . - Ред.

Ацетилхолин (рис. 2) производится в нервных клетках из холина и ацетилкофермента-А (ацетил-КоА). За разрушение ацетилхолина отвечает фермент ацетилхолинэстераза , находящийся в синаптической щели; об этом ферменте будет подробный разговор позже. План строения ацетилхолинергической системы головного мозга схож со строением других нейромедиаторных систем (рис. 3). В стволе мозга существует ряд структур, выделяющих ацетилхолин, который поступает по аксонам в базальные ганглии головного мозга. Там есть свои ацетилхолиновые нейроны, чьи отростки расходятся широко по коре и проникают в гиппокамп .

Рисунок 3. Ацетилхолиновая система мозга. Мы видим, что в глубоких отделах головного мозга находятся скопления нервных клеток (в переднем мозге и стволе), которые посылают свои отростки в различные отделы коры и подкорковых областей. В конечных пунктах из нейронных окончаний выделяется ацетилхолин. Местные эффекты нейромедиатора различаются в зависимости от типа рецептора и его расположения. MS - медиальное ядро перегородки, DB - диагональная связка Брока, nBM - базальное магноцеллюлярное ядро (ядро Мейтнера); PPT - педункулопонтийное тегментальное ядро, LDT - латеральное дорсальное тегментальное ядро (оба ядра - в ретикулярной формации ствола мозга). Рисунок из , адаптирован.

Рецепторы ацетилхолина делятся на две группы - мускариновые и никотиновые . Стимуляция мускариновых рецепторов приводит к изменению метаболизма в клетке через систему G-белков* (метаботропные рецепторы ), а воздействие на никотиновые - к изменению мембранного потенциала (ионотропные рецепторы ). Это происходит благодаря тому, что никотиновые рецепторы связаны с натриевыми каналами на поверхности клеток. Экспрессия рецепторов различается в разных участках нервной системы (рис. 4).

* - О пространственных структурах нескольких представителей громадного семейства GPCR-рецепторов - мембранных рецепторов, действующих через активацию G-белка, - доступно рассказано в статьях: «Рецепторы в активной форме » (об активной форме родопсина) , «Структуры рецепторов GPCR „в копилку“ » (о дофаминовом и хемокиновом рецепторах) , «Рецептор медиатора настроения » (о двух серотониновых рецепторах) . - Ред.

Рисунок 4. Распределение мускариновых и никотиновых рецепторов в головном мозге человека. Рисунок с сайта , адаптирован .

Медиатор памяти и обучения

Ацетилхолиновая система головного мозга напрямую связана с таким явлением как синаптическая пластичность - способность синапса усиливать или снижать выделение нейромедиатора в ответ на увеличение или уменьшение его активности. Синаптическая пластичность является важным процессом для памяти и обучения , поэтому ученые стремились обнаружить его в отделе мозга, отвечающем за эти функции - в гиппокампе. Большое количество ацетилхолиновых нейронов направляет свои отростки в гиппокамп, и там они влияют на высвобождение нейромедиаторов из других нервных клеток . Способ осуществления этого процесса довольно простой: на теле нейрона и его пресинаптической части расположены различные никотиновые рецепторы (в основном, α 7 - и β 2 -типов). Их активация будет приводить к тому, что прохождение сигнала по иннервируемой клетке упростится, и он с большей вероятностью перейдет на следующий нейрон. Наибольшее влияние такого рода испытывают на себе ГАМК-ергические нейроны - нервные клетки, чьим нейромедиатором является γ-аминомасляная кислота .

ГАМК-ергические нейроны являются важной частью системы, генерирующей электрические ритмы нашего мозга. Эти ритмы можно записать и изучить при помощи электроэнцефалограммы - широкодоступного метода исследования в нейрофизиологии. Ритмы различной частоты обозначаются греческими буквами: 8–14 Гц - альфа-ритм, 14–30 Гц - бета-ритм и так далее. Использование стимуляторов ацетилхолиновых рецепторов приводит к тому, что в мозге возникает тета- (0,4–14 Гц) и гамма-ритм (30–80 Гц). Эти ритмы, как правило, сопровождают активную когнитивную деятельность. Стимуляция постсинаптических мускариновых ацетилхолиновых рецепторов, расположенных на нейронах гиппокампа (центра памяти) и префронтальной коры (центр сложных форм поведения), приводит к возбуждению этих клеток и генерации упомянутых выше ритмов. Они сопровождают различную когнитивную деятельность - например, выстраивание временнόй последовательности событий .

Гиппокамп и префронтальная кора играют важную роль в обучении. С точки зрения рефлексов любое обучение происходит двумя путями. Допустим, вы экспериментатор, и объектом вашего эксперимента является мышь. В первом случае в ее клетке зажигается свет (условный стимул), и грызун получает кусочек сыра (безусловный стимул) еще до того, как свет погаснет. Формирующийся рефлекс можно назвать задержанным . Во втором случае свет также зажигается, но мышь получает лакомство через некоторое время после выключения лампочки. Этот тип рефлекса называется следовым . Рефлексы второго типа зависят от осознанности стимулов больше, чем рефлексы первого типа. Угнетение активности ацетилхолинергической системы приводит к тому, что у животных не вырабатываются следовые рефлексы, хотя с задержанными проблем не возникает .

При сравнении секреции ацетилхолина в мозге крыс, у которых вырабатывали оба вида рефлексов, были получены интересные данные . У крыс, которые успешно справлялись с усвоением временнόй связи между условным и безусловным стимулом, обнаруживалось значительное увеличение уровня ацетилхолина в медиальной префронтальной коре (рис. 5) по сравнению с гиппокампом. Особенно существенной была разница в уровнях ацетилхолина у крыс, которые выработали следовый рефлекс. Те грызуны, которые не справились с обеими задачами, обнаруживали приблизительно равные уровни нейромедиатора в исследуемых отделах мозга (рис. 6). Исходя из этого можно заключить, что непосредственно в обучении бóльшую роль играет префронтальная кора, а гиппокамп сохраняет полученные знания .

Рисунок 5. Выброс ацетилхолина в гиппокампе (HPC) и префронтальной коре (PFC) крыс при успешной выработке рефлексов. Максимальный уровень ацетилхолина наблюдается в префронтальной коре при выработке следового рефлекса. Рисунок из .

Рисунок 6. Выброс ацетилхолина в гиппокампе (HPC) и префронтальной коре (PFC) крыс в случае «провала» в обучении. Регистрируется почти одинаковое содержание ацетилхолина в двух зонах вне зависимости от рефлекса. Рисунок из.

Рецепторы внимания

Рисунок 7. Многообразие ацетилхолиновых рецепторов (nAChR) в слоях префронтальной коры головного мозга. Рисунок из .

Для обучения важен не только интеллект или объем памяти, но и внимание. Без внимания даже самый успешный ученик будет двоечником. Ацетилхолин участвует также в процессах, регулирующих внимание.

Внимание - сфокусированное восприятие или обдумывание проблемы - сопровождается повышенной активностью в префронтальной коре. Ацетилхолиновые волокна направляются в лобную кору из глубоких отделов мозга. В связи с тем, что часто нам требуется быстрое переключение внимания, вполне логично, что в регуляции внимания участвуют никотиновые (ионотропные) рецепторы ацетилхолина, а не мускариновые, которые вызывают более медленные и преимущественно структурные изменения в нейронах. Повреждение ацетилхолиновых структур глубоких отделов мозга снижает активность медиальной префронтальной коры и нарушает внимание . Кроме того, взаимодействие глубоких ацетилхолиновых структур с префронтальной корой не ограничивается восходящими сигналами. Нейроны лобной коры также отправляют свои сигналы в нижележащие отделы, что позволяет создавать саморегулирующуюся систему поддержания внимания . Внимание поддерживается за счет воздействия ацетилхолина на пресинаптические и постсинаптические рецепторы (рис. 7).

При разговоре о никотиновых рецепторах и внимании возникает вопрос об улучшении когнитивных функций при помощи курения, то есть введения дополнительной дозы никотина, пусть и в виде сигаретного дыма . Ситуация здесь довольно ясная, и результаты не дают курильщикам лишнего аргумента в пользу их пагубного пристрастия. Никотин, пришедший извне, нарушает нормальное развитие мозга, что может приводить к расстройствам внимания (на долгие годы) . Если сравнивать курильщиков и некурящих, то у первых показатели внимания хуже, чем у их оппонентов . Улучшение внимания у курильщиков возникает в случае выкуривания сигареты после долгого воздержания, когда их плохое настроение и когнитивные проблемы улетучиваются вместе с дымом.

Лекарство для памяти

Если в норме ацетилхолинергическая система нашего мозга отвечает за память, внимание и обучение, то заболевания, при которых нарушается этот тип трансмиссии в нашем мозге, должны проявляться соответствующими симптомами: потерей памяти, снижением внимания и способности учиться новому. Здесь надо сразу оговориться, что в ходе нормального старения у подавляющего большинства людей снижается и способность к запоминанию нового, и живость ума в целом. Если эти нарушения выражены настолько, что мешают пожилому человеку заниматься повседневной деятельностью и удовлетворять свои повседневные потребности (обслуживать себя), то тогда врачи могут заподозрить деменцию . Если вы хотите узнать о деменции больше, то рекомендую начать с изучения информационного бюллетеня ВОЗ , посвященного этой патологии .

Строго говоря, деменция - это не отдельное заболевание, а синдром, встречающийся при ряде заболеваний. Одной из самых частых болезней, которая приводит к деменции, является болезнь Альцгеймера . Считается, что при болезни Альцгеймера в нервных клетках накапливается патологический белок β-амилоид , который и нарушает деятельность нервных клеток, что в итоге приводит к их гибели. Кроме этой теории существует ряд других, которые имеют свои доказательства. Вполне вероятно, что при болезни Альцгеймера в клетках головного мозга разных пациентов происходят неодинаковые процессы, но приводят они к схожим симптомам. Однако β-амилоид интересен тем, что он может подавлять эффект, производимый ацетилхолином на клетку через никотиновые рецепторы . Если у нас получится интенсифицировать ацетилхолинергическую передачу, то мы можем уменьшить проявления болезни и продлить самостоятельную жизнь человеку с деменцией.

К препаратам, используемым при деменции, относятся ингибиторы ацетилхолинэстеразы (АХЭ) - фермента, разрушающего ацетилхолин в синаптической щели. Применение ингибиторов АХЭ приводит к повышению содержания ацетилхолина в межнейронном пространстве и улучшению передачи сигнала. Исследование эффективности ингибиторов АХЭ при болезни Альцгеймера определило, что они способны уменьшить симптомы заболевания и замедлить его прогрессирование . Три наиболее применяемых препарата из этой группы - ривастигмин, галантамин и донепезил - сравнимы по эффективности и безопасности. Также существует небольшой, но успешный опыт применения ингибиторов АХЭ в лечении музыкальных галлюцинаций у пожилых людей .

При помощи ацетилхолина наш мозг обучается, фокусирует внимание на разных объектах и явлениях окружающего мира. Наша память «работает» на ацетилхолине, а его дефицит можно компенсировать при помощи лекарств. Надеюсь, что вам понравилось знакомство с ацетилхолином.

Литература

  1. Дофаминовые болезни ;
  2. Серотониновые сети ;
  3. Тайны голубого пятна ;
  4. Метроном: как руководить разрядами? ;
  5. Рецепторы в активной форме ;
  6. . Neurobiol. Learn. Mem. 87 (1), 86–92;
  7. Flesher M.M., Butt A.E., Kinney-Hurd B.L. (2011). Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning . Neurobiol. Learn. Mem. 96 (2), 181–191;
  8. Gill T.M., Sarter M., Givens B. (2000). Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation . J. Neurosci. 20 (12), 4745–4757;
  9. Sherman S.M. (2007). The thalamus is more than just a relay . Curr. Opin. Neurobiol. 17 (4), 417–422;
  10. Bloem B., Poorthuis R.B., Mansvelder H.D. (2014). Cholinergic modulation of the medial prefrontal cortex: the role of nicotinic receptors in attention and regulation of neuronal activity . Front. Neural. Circuits. 8 , 17. doi: 10.3389/fncir.2014.00017;
  11. Спасибо, дорогой Минздрав, что предупредил! ;Amyloid β-protein suppressed nicotinic acetylcholine receptor-mediated currents in acutely isolated rat hippocampal CA1 pyramidal neurons . Synapse . 67 (1), 11–20;
  12. Birks J. (2006). Cholinesterase inhibitors for Alzheimer’s disease . The Cochrane Library ;
  13. Kumar A., Singh A., Ekavali. (2015). A review on Alzheimer’s disease pathophysiology and its management: an update . Pharmacol. Rep. 67 (2), 195–203;
  14. Blom J.D., Coebergh J.A., Lauw R., Sommer I.E. (2015). Musical hallucinations treated with acetylcholinesterase inhibitors . Front. Psychiatry . 6 , 46. doi: 10.3389/fpsyt.2015.00046..




error: Контент защищен !!