Геометрическая прогрессия как найти сумму первых чисел. Геометрическая прогрессия. Исчерпывающий гид с примерами (2019)

Если каждому натуральному числу n поставить в соответствие действительное число a n , то говорят, что задано числовую последовательность :

a 1 , a 2 , a 3 , . . . , a n , . . . .

Итак, числовая последовательность — функция натурального аргумента.

Число a 1 называют первым членом последовательности , число a 2 вторым членом последовательности , число a 3 третьим и так далее. Число a n называют n-м членом последовательности , а натуральное число n его номером .

Из двух соседних членов a n и a n +1 последовательности член a n +1 называют последующим (по отношению к a n ), а a n предыдущим (по отношению к a n +1 ).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена , то есть формулы, которая позволяет определить член последовательности по его номеру.

Например,

последовательность положительных нечётных чисел можно задать формулой

a n = 2n - 1,

а последовательность чередующихся 1 и -1 — формулой

b n = (-1) n +1 .

Последовательность можно определить рекуррентной формулой , то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

Например,

если a 1 = 1 , а a n +1 = a n + 5

a 1 = 1,

a 2 = a 1 + 5 = 1 + 5 = 6,

a 3 = a 2 + 5 = 6 + 5 = 11,

a 4 = a 3 + 5 = 11 + 5 = 16,

a 5 = a 4 + 5 = 16 + 5 = 21.

Если а 1 = 1, а 2 = 1, a n +2 = a n + a n +1 , то первые семь членов числовой последовательности устанавливаем следующим образом:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

a 5 = a 3 + a 4 = 2 + 3 = 5,

a 6 = a 4 + a 5 = 3 + 5 = 8,

a 7 = a 5 + a 6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными .

Последовательность называется конечной , если она имеет конечное число членов. Последовательность называется бесконечной , если она имеет бесконечно много членов.

Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей , если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей , если каждый её член, начиная со второго, меньше чем предыдущий.

Например,

2, 4, 6, 8, . . . , 2n , . . . — возрастающая последовательность;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 / n , . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью .

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

a 1 , a 2 , a 3 , . . . , a n , . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

a n +1 = a n + d ,

где d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а 2 - a 1 = а 3 - a 2 = . . . = a n +1 - a n = d .

Число d называют разностью арифметической прогрессии .

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

Например,

если a 1 = 3, d = 4 , то первые пять членов последовательности находим следующим образом:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d = 7 + 4 = 11,

a 4 = a 3 + d = 11 + 4 = 15,

a 5 = a 4 + d = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a 1 и разностью d её n

a n = a 1 + (n - 1)d.

Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

a 1 =1, d = 3,

a 30 = a 1 + (30 - 1)d = 1 + 29· 3 = 88.

a n-1 = a 1 + (n - 2)d,

a n = a 1 + (n - 1)d,

a n +1 = a 1 + nd ,

то, очевидно,

a n =
a n-1 + a n+1
2

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

числа a, b и c являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

Например,

a n = 2n - 7 , является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

a n = 2n - 7,

a n-1 = 2(n - 1) - 7 = 2n - 9,

a n+1 = 2(n + 1) - 7 = 2n - 5.

Следовательно,

a n+1 + a n-1
=
2n - 5 + 2n - 9
= 2n - 7 = a n ,
2
2

Отметим, что n -й член арифметической прогрессии можно найти не толь через a 1 , но и любой предыдущий a k

a n = a k + (n - k )d .

Например,

для a 5 можно записать

a 5 = a 1 + 4d ,

a 5 = a 2 + 3d ,

a 5 = a 3 + 2d ,

a 5 = a 4 + d .

a n = a n-k + kd ,

a n = a n+k - kd ,

то, очевидно,

a n =
a n-k + a n+k
2

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

a m + a n = a k + a l ,

m + n = k + l.

Например,

в арифметической прогрессии

1) a 10 = 28 = (25 + 31)/2 = (a 9 + a 11 )/2;

2) 28 = a 10 = a 3 + 7d = 7 + 7·3 = 7 + 21 = 28;

3) a 10 = 28 = (19 + 37)/2 = (a 7 + a 13 )/2;

4) a 2 + a 12 = a 5 + a 9 , так как

a 2 + a 12 = 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n = a 1 + a 2 + a 3 + . . . + a n ,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

a k , a k +1 , . . . , a n ,

то предыдущая формула сохраняет свою структуру:

Например,

в арифметической прогрессии 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины a 1 , a n , d , n и S n связаны двумя формулами:

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0 , то она является возрастающей;
  • если d < 0 , то она является убывающей;
  • если d = 0 , то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

b 1 , b 2 , b 3 , . . . , b n , . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

b n +1 = b n · q ,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q .

Число q называют знаменателем геометрической прогрессии .

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

Например,

если b 1 = 1, q = -3 , то первые пять членов последовательности находим следующим образом:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q = -3 · (-3) = 9,

b 4 = b 3 · q = 9 · (-3) = -27,

b 5 = b 4 · q = -27 · (-3) = 81.

b 1 и знаменателем q её n -й член может быть найден по формуле:

b n = b 1 · q n -1 .

Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 · 2 6 = 64 .

b n-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n ,

то, очевидно,

b n 2 = b n -1 · b n +1 ,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

Например,

докажем, что последовательность, которая задаётся формулой b n = -3 · 2 n , является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

b n = -3 · 2 n ,

b n -1 = -3 · 2 n -1 ,

b n +1 = -3 · 2 n +1 .

Следовательно,

b n 2 = (-3 · 2 n ) 2 = (-3 · 2 n -1 ) · (-3 · 2 n +1 ) = b n -1 · b n +1 ,

что и доказывает нужное утверждение.

Отметим, что n -й член геометрической прогрессии можно найти не только через b 1 , но и любой предыдущий член b k , для чего достаточно воспользоваться формулой

b n = b k · q n - k .

Например,

для b 5 можно записать

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3 ,

b 5 = b 3 · q 2 ,

b 5 = b 4 · q .

b n = b k · q n - k ,

b n = b n - k · q k ,

то, очевидно,

b n 2 = b n - k · b n + k

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b m · b n = b k · b l ,

m + n = k + l .

Например,

в геометрической прогрессии

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , так как

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n = b 1 + b 2 + b 3 + . . . + b n

первых n членов геометрической прогрессии со знаменателем q 0 вычисляется по формуле:

А при q = 1 — по формуле

S n = nb 1

Заметим, что если нужно просуммировать члены

b k , b k +1 , . . . , b n ,

то используется формула:

S n - S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Если дана геометрическая прогрессия, то величины b 1 , b n , q , n и S n связаны двумя формулами:

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b 1 и знаменателем q имеют место следующие свойства монотонности :

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b 1 > 0 и q > 1;

b 1 < 0 и 0 < q < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b 1 > 0 и 0 < q < 1;

b 1 < 0 и q > 1.

Если q < 0 , то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P n = b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n ) n / 2 .

Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1 , то есть

|q | < 1 .

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

1 < q < 0 .

При таком знаменателе последовательность знакопеременная. Например,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n . Это число всегда конечно и выражается формулой

S = b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

a 1 , a 2 , a 3 , . . . d , то

b a 1 , b a 2 , b a 3 , . . . b d .

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

7 1 , 7 3 , 7 5 , . . . — геометрическая прогрессия с знаменателем 7 2 .

b 1 , b 2 , b 3 , . . . — геометрическая прогрессия с знаменателем q , то

log a b 1 , log a b 2 , log a b 3 , . . . — арифметическая прогрессия с разностью log a q .

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2, lg 12, lg 72, . . . — арифметическая прогрессия с разностью lg 6 .

ЧИСЛОВЫЕ ПОСЛЕДОВАТЕЛЬНОСТИ VI

§ l48. Сумма бесконечно убывающей геометрической прогрессии

До сих пор, говоря о суммах, мы всегда предполагали, что число слагаемых в этих суммах конечно (например, 2, 15, 1000 и т. д.). Но при решении некоторых задач (особенно высшей математики) приходится сталкиваться и с суммами бесконечного числа слагаемых

S = a 1 + a 2 + ... + a n + ... . (1)

Что же представляют из себя такие суммы? По определению суммой бесконечного числа слагаемых a 1 , a 2 , ..., a n , ... называется предел суммы S n первых п чисел, когда п -> :

S = S n = (a 1 + a 2 + ... + a n ). (2)

Предел (2), конечно, может существовать, а может и не существовать. Соответственно этому говорят, что сумма (1) существует или не существует.

Как же выяснить, существует ли сумма (1) в каждом конкретном случае? Общее решение этого вопроса выходит далеко за пределы нашей программы. Однако существует один важный частный случай, который нам предстоит сейчас рассмотреть. Речь будет идти о суммировании членов бесконечно убывающей геометрической прогрессии.

Пусть a 1 , a 1 q , a 1 q 2 , ...- бесконечно убывающая геометрическая прогрессия. Это означает, что | q |< 1. Сумма первых п членов этой прогрессии равна

Из основных теорем о пределах переменных величин (см. § 136) получаем:

Но 1 = 1, a q n = 0. Поэтому

Итак, сумма бесконечно убывающей геометрической прогрессии равна первому члену этой прогрести, деленному на единицу минус знаменатель этой прогрессии.

1) Сумма геометрической прогрессии 1, 1 / 3 , 1 / 9 , 1 / 27 , ... равна

а сумма геометрической прогрессии 12; -6; 3; - 3 / 2 , ... равна

2) Простую периодическую дробь 0,454545 ... обратить в обыкновенную.

Для решения этой задачи представим данную дробь в виде бесконечной суммы:

Правая часть этого равенства представляет собой сумму бесконечно убывающей геометрической прогрессии, первый член которой равен 45 / 100 , а знаменатель 1 / 100 . Поэтому

Описанным способом может быть получено и общее правило обращения простых периодических дробей в обыкновенные (см. гл. II, § 38):

Для обращения простой периодической дроби в обыкновенную нужно поступить следующим образом: в числителе поставить период десятичной дроби, а в знаменателе - число, состоящее из девяток, взятых столько раз, сколько знаков в периоде десятичной дроби.

3) Смешанную периодическую дробь 0,58333 .... обратить в обыкновенную.

Представим данную дробь в виде бесконечной суммы:

В правой части этого равенства все слагаемые, начиная с 3 / 1000 , образуют бесконечно убывающую геометрическую прогрессию, первый член которой равен 3 / 1000 , а знаменатель 1 / 10 . Поэтому

Описанным способом может быть получено и общее правило обращения смешанных периодических дробей в обыкновенные (см. гл. II, § 38). Мы сознательно не приводим его здесь. Запоминать это громоздкое правило нет необходимости. Гораздо полезнее знать, что любую смешанную периодическую дробь можно представить в виде суммы бесконечно убывающей геометрической прогрессии и некоторого числа. А формулу

для суммы бесконечно убывающей геометрической прогрессии нужно, конечно, помнить.

В качестве упражнения предлагаем вам, помимо приведенных ниже задач № 995-1000, еще раз обратиться к задаче № 301 § 38 .

Упражнения

995. Что называется суммой бесконечно убывающей геометрической прогрессии?

996. Найти суммы бесконечно убывающих геометрических прогрессий:

997. При каких значениях х прогрессия

является бесконечно убывающей? Найти сумму такой прогрессии.

998. В равносторонний треугольник со стороной а вписан посредством соединения середин его сторон новый треугольник; в этот треугольник тем же способом вписан новый треугольник и так далее до бесконечности.

а) сумму периметров всех этих треугольников;

б) сумму их площадей.

999. В квадрат со стороной а вписан путем соединения середин его сторон новый квадрат; в этот квадрат таким же образом вписан квадрат и так далее до бесконечности. Найти сумму периметров всех этих квадратов и сумму их площадей.

1000. Составить бесконечно убывающую геометрическую прогрессию, такую, чтобы сумма ее равнялась 25 / 4 , а сумма квадратов ее членов равнялась 625 / 24 .

Урок по теме “Бесконечно убывающая геометрическая прогрессия” (алгебра, 10кл.)

Цель урока: ознакомление учащихся с новым видом последовательности – бесконечно убывающей геометрической прогрессией.

Оборудование: проектор, экран.

Тип урока: урок – усвоение новой темы.

Ход урока

I . Орг. момент. Сообщение темы и цели урока.

II . Актуализация знаний учащихся.

В 9 классе вы изучали арифметическую и геометрическую прогрессии.

Вопросы

1. Определение арифметической прогрессии. (Арифметической прогрессией называется последовательность, каждый член которой,начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом).

2. Формула n -го члена арифметической прогрессии (
)

3. Формула суммы первых n членов арифметической прогрессии.

(
или
)

4. Определение геометрической прогрессии. (Геометрической прогрессией называется последовательность отличных от нуля чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число).

5. Формула n -го члена геометрической прогрессии (

)

6. Формула суммы первых n членов геометрической прогрессии. (
)

7. Какие формулы вы еще знаете?

(
, где
;
;
;
,
)

5. Для геометрической прогрессии
найдите пятый член.

6. Для геометрической прогрессии
найдите n -й член.

7. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 4 . (4)

8. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите b 1 и q .

9. В геометрической прогрессии b 3 = 8 и b 5 = 2 . Найдите S 5 . (62)

III . Изучение новой темы (демонстрация презентации).

Рассмотрим квадрат со стороной, равной 1. Нарисуем ещё один квадрат, сторона которого равна половине первого квадрата, затем ещё один, сторона которого – половина второго, потом следующий и т.д. Каждый раз сторона нового квадрата равна половине предыдущего.

В результате, мы получили последовательность сторон квадратов образующих геометрическую прогрессию со знаменателем .

И, что очень важно, чем больше мы будем строить таких квадратов, тем меньше будет сторона квадрата. Например ,

Т.е. с возрастанием номера n члены прогрессии приближаются к нулю.

С помощью этого рисунка можно рассмотреть и ещё одну последовательность.

Например, последовательность площадей квадратов:

. И, опять, если n неограниченно возрастает, то площадь, как угодно близко приближается к нулю.

Рассмотрим ещё один пример. Равносторонний треугольник со стороной равной 1см. Построим следующий треугольник с вершинами в серединах сторон 1-го треугольника, по теореме о средней линии треугольника – сторона 2-го равна половине стороны первого, сторона 3-го – половине стороны 2-го и т.д. Опять получаем последовательность длин сторон треугольников.

при
.

Если рассмотреть геометрическую прогрессию с отрицательным знаменателем.

То, опять, с возрастанием номера n члены прогрессии приближаются к нулю.

Обратим внимание на знаменатели этих последовательностей. Везде знаменатели были меньше 1 по модулю.

Можно сделать вывод: геометрическая прогрессия будет бесконечно убывающей, если модуль её знаменателя меньше 1.

Определение:

Геометрическая прогрессия называется бесконечно убывающей, если модуль её знаменателя меньше единицы.
.

С помощью определения можно решить вопрос о том, является ли геометрическая прогрессия бесконечно убывающей или нет.

Задача

Является ли последовательность бесконечно убывающей геометрической прогрессией, если она заданна формулой:

;
.

Решение:

. Найдем q .

;
;
;
.

данная геометрическая прогрессия является бесконечно убывающей.

б) данная последовательность не является бесконечно убывающей геометрической прогрессией.

Рассмотрим квадрат со стороной, равной 1. Разделим его пополам, одну из половинок ещё пополам и т.д. площади всех полученных прямоугольников при этом образуют бесконечно убывающую геометрическую прогрессию:

Сумма площадей всех полученных таким образом прямоугольников будет равна площади 1-го квадрата и равна 1.

Инструкция

10, 30, 90, 270...

Требуется найти знаменатель геометрической прогрессии.
Решение:

1 вариант. Возьмем произвольный член прогрессии (например, 90) и разделим его на предыдущий (30): 90/30=3.

Если известна сумма нескольких членов геометрической прогрессии или сумма всех членов убывающей геометрической прогрессии, то для нахождения знаменателя прогрессии воспользуйтесь соответствующими формулами:
Sn = b1*(1-q^n)/(1-q), где Sn – сумма n первых членов геометрической прогрессии и
S = b1/(1-q), где S – сумма бесконечно убывающей геометрической прогрессии (сумма всех членов прогрессии со знаменателем меньшим единицы).
Пример.

Первый член убывающей геометрической прогрессии равен единице, а сумма всех ее членов равна двум.

Требуется определить знаменатель этой прогрессии.
Решение:

Подставьте данные из задачи в формулу. Получится:
2=1/(1-q), откуда – q=1/2.

Прогрессия представляет собой последовательность чисел. В геометрической прогрессии каждый последующий член получается умножением предыдущего на некоторое число q, называемое знаменателем прогрессии.

Инструкция

Если известно два соседних члена геометрической b(n+1) и b(n), чтобы получить знаменатель, надо число с большим разделить на предшествующее ему: q=b(n+1)/b(n). Это следует из определения прогрессии и ее знаменателя. Важным условием является неравенство нулю первого члена и знаменателя прогрессии, иначе считается неопределенной.

Так, между членами прогрессии устанавливаются следующие соотношения: b2=b1 q, b3=b2 q, … , b(n)=b(n-1) q. По формуле b(n)=b1 q^(n-1) может быть вычислен любой член геометрической прогрессии, в которой известен знаменатель q и член b1. Также каждый из прогрессии по модулю равен среднему своих соседних членов: |b(n)|=√, отсюда прогрессия и получила свое .

Аналогом геометрической прогрессии является простейшая показательная функция y=a^x, где x стоит в показателе степени, a – некоторое число. В этом случае знаменатель прогрессии совпадает с первым членом и равен числу a. Под значением функции y можно понимать n-й член прогрессии, если аргумент x принять за натуральное число n (счетчик).

Существует для суммы первых n членов геометрической прогрессии: S(n)=b1 (1-q^n)/(1-q). Данная формула справедлива при q≠1. Если q=1, то сумма первых n членов вычисляется формулой S(n)=n b1. Кстати, прогрессия будет называться возрастающей при q большем единицы и положительном b1. При знаменателе прогрессии, по модулю не превышающем единицы, прогрессия будет называться убывающей.

Частный случай геометрической прогрессии – бесконечно убывающая геометрическая прогрессия (б.у.г.п.). Дело в том, что члены убывающей геометрической прогрессии будут раз за разом уменьшаться, но никогда не достигнут нуля. Несмотря на это, можно найти сумму всех членов такой прогрессии. Она определяется формулой S=b1/(1-q). Общее количество членов n бесконечно.

Чтобы наглядно представить, как можно сложить бесконечное количество чисел и не получить при этом бесконечность, испеките торт. Отрежьте половину этого . Затем отрежьте 1/2 от половины, и так далее. Кусочки, которые у вас будут получаться, являют собой не что иное, как члены бесконечно убывающей геометрической прогрессии со знаменателем 1/2. Если сложить все эти кусочки, вы получите исходный торт.

Задачи по геометрии - это особая разновидность упражнений, требующая пространственного мышления. Если у вас не получается решить геометрическую задачу , попробуйте следовать нижеприведенным правилам.

Инструкция

Прочитайте очень внимательно условие задачи, если что-то не запомнили или не поняли, перечитайте еще раз.

Постарайтесь определить, к какому виду геометрических задач она , так, например: вычислительные, когда нужно узнать какую-нибудь величину, задачи на , требующие логической цепочки рассуждений, задачи на построение при помощи циркуля и линейки. Еще задачи смешанного типа. Когда вы выяснили тип задачи, постарайтесь рассуждать логически.

Примените необходимую теорему для данной задачи, если же есть сомнения или вообще отсутствуют варианты, то постарайтесь вспомнить теорию, которую вы проходили по соответствующей теме.

Оформите решение задачи также на черновике. Попытайтесь применить известные способы проверки верности вашего решения.

Оформите решение задачи аккуратно в тетради, без помарок и зачеркиваний, а главное - .Возможно, на решение первых геометрических задач уйдет сил и времени. Однако, как только вы освоите этот процесс - начнете щелкать задачи по , как орешки, получая от этого удовольствие!

Геометрическая прогрессия - это такая последовательность чисел b1, b2, b3, ... , b(n-1), b(n), что b2=b1*q, b3=b2*q, ... , b(n)=b(n-1)*q, b1≠0, q≠0. Иными словами, каждый член прогрессии получается из предыдущего умножением его на некоторый ненулевой знаменатель прогрессии q.

Инструкция

Задачи на прогрессии чаще всего решаются составлением и последующим системы относительно первого члена прогрессии b1 и знаменателя прогрессии q. Для составления уравнений полезно помнить некоторые формулы.

Как выразить n-й член прогрессии через первый член прогрессии и знаменатель прогрессии:b(n)=b1*q^(n-1).

Рассмотрим отдельно случай |q|<1. Если знаменатель прогрессии по модулю меньше единицы, имеем бесконечно убывающую геометрическую . Сумма первых n членов бесконечно убывающей геометрической прогрессии ищется так же, как и для неубывающей геометрической прогрессии. Однако в случае бесконечно убывающей геометрической прогрессии можно найти также сумму всех членов этой прогрессии, поскольку при бесконечном n будет бесконечно уменьшаться значение b(n), и сумма всех членов будет стремиться к определенному пределу. Итак, сумма всех членов бесконечно убывающей геометрической прогрессии

Некоторые задачи физики и математики могут быть решены с использованием свойств числовых рядов. Две самых простых числовых последовательности, которые изучаются в школах, это алгебраическая и геометрическая. В данной статье рассмотрим подробнее вопрос, как найти сумму бесконечной прогрессии геометрической убывающей.

Прогрессия геометрическая

Под этими словами понимают такой ряд действительных чисел, элементы a i которого удовлетворяют выражению:

Здесь i - номер элемента в ряду, r - постоянное число, которое называется знаменателем.

Это определение показывает, что, зная любой член прогрессии и его знаменатель, можно восстановить весь ряд чисел. Например, если известен 10-й элемент, то разделив его на r, получим 9-й элемент, затем, разделив еще раз, получим 8-й и так далее. Эти простые рассуждения позволяют записать выражение, которое справедливо для рассматриваемого ряда чисел:

Примером прогрессии со знаменателем 2 может быть такой ряд:

1, 2, 4, 8, 16, 32, ...

Если же знаменатель будет равен -2, тогда получается совершенно другой ряд:

1, -2, 4, -8, 16, -32, ...

Прогрессия геометрическая является гораздо более быстрой, чем алгебраическая, то есть ее члены быстро растут и быстро уменьшаются.

Сумма i членов прогрессии

Для решения практических задач часто приходиться вычислять сумму нескольких элементов рассматриваемой числовой последовательности. Для этого случая справедлива следующая формула:

S i = a 1 *(r i -1)/(r-1)

Видно, что для вычисления суммы i членов необходимо знать всего два числа: a 1 и r, что является логичным, поскольку они однозначно определяют всю последовательность.

Убывающая последовательность и сумма ее членов

Теперь рассмотрим частный случай. Будем считать, что модуль знаменателя r не превышает единицы, то есть -1

Убывающую геометрическую прогрессию интересно рассмотреть, потому что бесконечная сумма ее членов стремится к конечному действительному числу.

Получим формулу суммы Это легко сделать, если выписать выражение для S i , приведенного в предыдущем пункте. Имеем:

S i = a 1 *(r i -1)/(r-1)

Рассмотрим случай, когда i->∞. Поскольку модуль знаменателя меньше 1, то возведение его в бесконечную степень даст ноль. Это можно проверить на примере r=0,5:

0,5 2 = 0,25; 0,5 3 = 0,125; ...., 0,5 20 = 0,0000009.

В итоге сумма членов бесконечной геометрической прогрессии убывающей примет форму:

Эта формула часто используется на практике, например, для вычисления площадей фигур. Ее также применяют при решении парадокса Зенона Элейского с черепахой и Ахиллесом.

Очевидно, что рассмотрение суммы бесконечной прогрессии геометрической возрастающей (r>1), приведет к результату S ∞ = +∞.

Задача на нахождение первого члена прогрессии

Покажем, как следует применять приведенные выше формулы на примере решения задачи. Известно, что сумма бесконечной геометрической прогрессии равна 11. При этом 7-й ее член в 6 раз меньше третьего члена. Чему равен первый элемент для этого числового ряда?

Для начала выпишем два выражения для определения 7-го и 3-го элементов. Получаем:

Разделив первое выражение на второе, и выражая знаменатель, имеем:

a 7 /a 3 = r 4 => r = 4 √(a 7 /a 3)

Поскольку отношение седьмого и третьего членов дано в условии задачи, можно его подставить и найти r:

r = 4 √(a 7 /a 3) = 4 √(1/6) ≈ 0,63894

Мы рассчитали r с точностью пяти значащих цифр после запятой. Поскольку полученное значение меньше единицы, значит, прогрессия является убывающей, что оправдывает использование формулы для ее бесконечной суммы. Запишем выражение для первого члена через сумму S ∞ :

Подставляем в эту формулу известные значения и получаем ответ:

a 1 = 11*(1-0,63894) = 3,97166.

Знаменитый парадокс Зенона с быстрым Ахиллесом и медленной черепахой

Зенон Элейский - известный греческий философ, живший в V веке до н. э. До настоящего времени дошли ряд его апогей или парадоксов, в которых формулируется проблема бесконечно большого и бесконечно малого в математике.

Одним из известных парадоксов Зенона являются соревнования Ахиллеса и черепахи. Зенон полагал, что если Ахиллес предоставит некоторое преимущество черепахе в расстоянии, то он никогда не сможет ее догнать. Например, пусть Ахиллес бежит в 10 раз быстрее, чем ползет животное, которое для примера находится на расстоянии 100 метров впереди него. Когда воин пробежит 100 метров, то черепаха отползет на 10. Пробежав вновь 10 метров, Ахиллес увидит, что черепаха отползла еще на 1 метр. Рассуждать так можно до бесконечности, расстояние будет между соревнующимися действительно уменьшаться, но черепаха будет всегда находиться впереди.

Привел Зенона к выводу, что движения не существует, и все окружающие перемещения объектов - это иллюзия. Конечно же, древнегреческий философ ошибался.

Решение парадокса кроется в том, что бесконечная сумма постоянно уменьшающихся отрезков, стремится к конечному числу. В приведенном выше случае для расстояния, которое пробежал Ахиллес, получим:

100 + 10 + 1 + 0,1 + 0,01 + ...

Применяя формулу суммы бесконечной прогрессии геометрической, получим:

S ∞ = 100 /(1-0,1) ≈ 111,111 метров

Этот результат показывает, что Ахиллес догонит черепаху, когда она проползет всего 11,111 метров.

Древние греки не умели работать с бесконечными величинами в математике. Однако этот парадокс можно разрешить, если обратить внимание не на бесконечное число промежутков, которые должен преодолеть Ахиллес, а на конечное число шагов бегуна, необходимых для достижения цели.





error: Контент защищен !!